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Abstract—We  study  nonlinear  light  propagation  in  colloidal 
suspensions  of  dielectric  nanoparticles  within  the  hard-sphere 
interaction approximation.  We analyze the existence and properties of 
self-trapped  beams  (spatial  optical  solitons)  in  such  media  and 
demonstrate the existence of a bistability regime in the one-dimensional 
case. We find however that  the lower stable branch disappears in the 
two-dimensional model.

Spatial optical solitons are formed when a light-mediated 
change  of  the   refractive  index  induces  an  effective 
lensing effect that balances diffraction of the laser beam 
[1].  When  an  optical  beam  passes  through  a  colloidal 
medium composed  of  a  liquid  suspension  of  dielectric 
nanoparticles,  the  optical  gradient  force  acts  against 
particle  diffusion,  increasing  the  refractive  index  in 
regions of higher light intensity. The corresponding local 
change of the refractive index is of the self-focusing type, 
and it allows for creation of spatial optical solitons in the 
form of self-trapped optical beams, as was demonstrated 
in  both  theoretical  and  experimental  studies  [2–5]. 
Recently,  it  was shown theoretically [5] that the optical 
response  of  a  colloidal  medium  in  the  hard-sphere 
approximation  can  lead  to  optical  bistability  and  the 
existence  of  two  stable  soliton  solutions  for  the  same 
beam power,  i.e., soliton bistability of the first kind [6,7]. 
This opens novel opportunities for the control of soliton 
beams via their collisions and switching [8].

In this letter we review results of our recent studies on 
solitons in colloidal  media and show that  the bistability 
phenomenon,  predicted  for  systems  confined  in  one 
transverse direction such as planar waveguides or surface 
waves [2], is absent in the case of bulk colloidal medium, 
where  light  can  propagate  freely  in  both  transverse 
directions.

The  model  of  nonlinear  laser  beam propagation  in  a 
colloidal  suspension  of  dielectric  hard  spheres  was 
described in [8]. We assume that the refractive index of 
colloidal  particles,  np,  is  slightly  higher  than  the 
background  index  nb and  that  the  particle  diameter  is 
much smaller than the laser wavelength in the background 
medium, d ≪0 /nb  (Rayleigh regime). We assume that 
the dielectric colloidal particles interact  with each other 
through a  hard-sphere  potential.  In  the  steady state  the 

colloidal  particles  satisfy  the  Maxwellian  velocity 
distribution, which follows from the phase-space density 
in  the  canonical  ensemble  ~exp −E /k B T  .  The 
pressure  exerted  by colloidal  particles  can  be  obtained 
from the equation of state in analogy with the hard-sphere 
gas [9]:

 p


=Z  , (1)

where  =1/ k B T ,  p is the pressure,    is the colloidal 
particle  density,  Z   is  the  compressibility,  and 
=/0  is the packing fraction. In the case of ideal gas, 

we  have  Z=1.  For  a  hard-sphere  gas,  the  Carnahan-
Starling formula Z=12−3/1−3  gives a very 
good  approximation  up  to  the  fluid-solid  transition  at 
≈0.5 [9].  This  phenomenological  formula  is  in 

agreement with exact perturbation theory calculations as 
well as molecular-dynamics simulations.

In the presence of a slowly varying external potential, 
such as that induced by the presence of optical beam, the 
particle  velocity distribution is  locally Maxwellian.  The 
gradient  of  the  density  ( )rρ  is  assumed to  be  locally 
parallel  to  x̂ ,  and we consider  a small box of volume 

dxdS=dV , with length  dx and normal surface  dS. The 
difference  in  pressure  exerted  on  the  right  and  left 
surfaces, dp, gives rise to an effective force acting on the 
colloidal particles, Fint. It is equal to the external force that 
is  necessary  to  sustain  the  density  gradient,  and 

ρdxf=dSρdVf=dSF=dp intintint −−− // ,  where  fint  is 
the average force acting on a single particle. Using (1), we 
get d Z /dx=− f int . The particle current density is 
equal to

j= f ex f int = f ex−D ∇ Z  , (2)

where    is  the  particle  mobility,  D=/  is  the 
diffusion  constant,  and  fex corresponds  to  the  external 
optical gradient force.

For  steady-state  solutions,  equation (2)  can be  solved 
analytically to give electric field envelope u:

∣u∣2=g −g 0 , (3)
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where  0  is the background colloidal  packing fraction, 
and g =3−/1−3ln   [8].

The typical dependence ∣u∣2  in this case is shown in 
Fig.  1.  In  the  low-intensity  limit,  the  nonlinear  index 
change is Kerr-like (proportional to intensity). For higher 
intensities, it is well described by the exponential model 
of  [3,4].  Finally,  for  higher  densities  the particle  hard-
sphere  interactions  become  significant  and  the 
nonlinearity  saturates  as  the  exponential  model  breaks 
down.

Fig. 1. Packing fraction   of colloidal particles vs the light intensity 
(solid line). The dashed line shows the dependence of the exponential 

model.

The  light  propagation  equation  can  be  derived  from 
Helmholtz  equation  under  the  slowly varying  envelope 
approximation  [8].  In  renormalized  spatial  coordinates, 
we obtain a generalized Nonlinear Schrödinger Equation 
(NLS)

i u
 z

 1
2
∇⊥

2 u−0ui 
2
 u=0, (4)

where  the  renormalized  damping  coefficient  due  to 
Rayleigh scattering is

= 2
3
3130d 

3

 , (5)

and =m2−1/m22   with m= np / nb. From  (5),  we 
conclude  that  the  effect  of  scattering  losses  depends 
strongly  on  the  ratio  of  the  particle  size  to  the  laser 
wavelength. In the following, we will ignore the effect of 
damping in accordance with the assumption d ≪0 .

First,  we  review  results  on  one-dimensional  spatial 
solitons when u = u(x,z). We look for localized solutions 
of  (4)  in the form  u=A  x exp i z  .  In  Fig.  2(a)  we 
show  the  dependence  of  the  soliton  width 
W =3∫∣x∣∣u∣2 dx  and  power  P=∫∣u∣2 dx  versus  the 

propagation constant   . The two stable branches with a 

branch with a negative slope [6]. Bistable solutions exist 
within the power range P≈33–51. These solitons fulfil all 
the  three  stability  conditions  required  for  robustness 
during  collisions  [10].  Examples  of  bistable  soliton 
profiles for P=40 are presented in Figs. 2(b) and 2(c). The 
width  of  the  soliton  from  the  lower  branch  is 
approximately  20  times  larger  than  the  width  of  the 
soliton  from the  upper  branch  carrying  the  same beam 
power.  Therefore,  these  solitons  can  be  easily 
distinguished in experiment by measuring their width. For 
the experimental parameters λ=1064 nm, particle diameter 
d=30  nm,  np=1.56,  and  nb=1.33  (polystyrene  beads  in 
water), the total soliton beam power is about 2 W and the 
peak  intensity  of  the  soliton  from  the  upper  branch 
reaches 300 MW/cm2.

Fig. 2. (a) Soliton power and width vs the propagation constant   in 
the one-dimensional case for 0=10−3 . Bottom panels show the soliton 
intensity profile (solid) and colloidal particle packing fraction (dashed) 

for bistable solitons carrying power P=40 from (b) the lower stable 
branch and (c) the upper stable branch. Notice the difference in the 

width scale.

In Fig. 3 we present one of the possible scenarios of 
soliton  collisions.  The  soliton  of  the  lower  branch  is 
triggered to switch to a soliton of the upper branch. In a 
sharp  contrast  to  all  previously  considered  types  of 
interaction between optical  solitons [1,11],  collisions of 
solitons  belonging  to  different  branches  are  phase 
independent  and  always  repulsive.  Presently,  it  is 
commonly  believed  that  the  incoherent  interaction  of 
solitons results always in their attraction, but not repulsion 
[1,11]. In fact, each of the solitons “feels” the other one as 
an  effective  attractive  potential;  hence,  the  soliton 
coalescence  or  passing  can  be  anticipated.  However,  a 
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soliton reflection from a narrow, deep, attractive potential 
wells or  defects  has been already reported  for  different 
systems [12,13]. It was shown that if the soliton velocity 
falls  below  a  certain  threshold,  a  repulsive  interaction 
between the soliton and an attractive potential can occur.

Fig. 3. Switching from the lower to the upper branch triggered by 
collision with another soliton for soliton power P=50 and k0 = 0.01. 

Powers of both solitons are equal to P.

Fig. 4. (a) Soliton power and width vs the propagation constant κ  in 
the two-dimensional case for 3

0 10−=η . The second stable branch, for 
low values of  , is absent.(b),(c) Profile of the light intensity (b) and 

colloidal packing fraction (c) for the stable soliton with P=300 and 
=0.18 . (d), (e) The same for the unstable soliton with P=1700 and 

=0.001

In  the  case  of  two-dimensional  model  we have  u  = 
u(x,y,z) and  the  transverse  Laplacian  in  equation  (4) 
contains  derivatives  with  respect  to  both  x and  y.  The 
steady-state  soliton  solutions  are   presented  in  Fig.  4 
which depicts dependence of  soliton width (and power) 
on  the  propagation  constant   ,  and  two-dimensional 
profiles of the solitons. In contrast to the one-dimensional 
case,  there  is  now only one  stable  soliton  branch  with 
positive slope, for high values of the propagation constant 
 . The lower branch disappears, which is a consequence 
of  the  fact  that  two-dimensional  solitons  are  unstable 
against collapse in the Kerr NLS model [14]. As we saw 
before,  the  nonlinear  refractive  index  change  in  the 
current model is Kerr-like (proportional to intensity) for 
low beam intensities. Therefore, one can expect that broad 
solitons with low light intensity, like those existing at low 
 , see Fig. 4(d), will be unstable.

In  conclusion,  we  reviewed  theoretical  results  on 
soliton  bistability in  colloidal  media  in  the  hard-sphere 
interaction  approximation.  We  demonstrated  that  the 
phenomenon of bistability, present in the one-dimensional 
geometry, is not present in the two-dimensional model due 
to instability in the Kerr regime and then disapp-earance 
of the lower branch of stable solitons.
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