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Abstract—The currently used theory of bright and dark spatial 

photorefractive (PR) solitons is phenomenological. In this work, we 

consider the dynamics of dark beams using a microscopic model based 
on the PR transport equations. It is generally believed that such a theory 

is more accurate. It has been found that these two approaches can give 
completely different predictions regarding the formation time of dark 

beams. The discrepancies can reach up to two orders of magnitude. An 

approximate analytical solution was presented, and a new time constant 
was introduced, considering crystals from three classes of PR materials: 

ferroelectrics, sillenites, and semiconductors. 
 
 

Spatial screening solitons, i.e., self-trapping beams that 

do not diffract during propagation, are one of the most 

interesting nonlinear effects produced in photorefractive 

materials. The simplest solitons (1+1)D can be created as 

bright and dark; in the latter case, it means a  black notch 

is superimposed on an otherwise uniform background 

illumination, see Fig.1. It is generally believed that the 

theory of these beams is well established, its description 

can be found in articles and monographs [1‒2]. The 

soliton beam analysis combines the paraxial wave 

equation with a system of microscopic material equations 

used to determine the distribution of the electric field, 

which induces a local change in the refractive index 

through the EO effect. However, what is commonly 

overlooked is that the standard theory imposes such 

strong constraints on the material equations that the result 

is a phenomenological (macroscopic) theory. It turns out 

that such an approximate theory correctly reproduces the 

properties of bright solitons [3], which was also 

confirmed experimentally [2, 4], but, as will be shown in 

this article, it differs significantly from the more accurate 

microscopic theory when it comes to the dynamics of 

dark solitons. To the author's knowledge, the correctness 

of the macroscopic approach has never been verified 

numerically or experimentally. It was automatically 

assumed that a method that works correctly for bright 

beams will also be suitable for dark ones. This is not true, 

and the discrepancies between the results of microscopic 

and macroscopic theories can reach almost two orders of 

magnitude. This article shows how to formulate a 

corrected microscopic dynamics equation and obtain a 

simple, approximate, universal solution that agrees well 

with numerical results. The dark beam parameters are 

shown in Fig. 1. 
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Fig. 1. Light intensity distribution for a Gaussian beam with half-width 

(HWHM) for a dark beam, where Is(x) is signal beam intensity 

distribution, and IB is background light intensity. 

A beam is assumed to be a Gaussian beam with the 

intensity given by: 

 ( )2 2
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I x I I I m x wx= + = − −    ,  (1) 

where I0 = I + IB and w is the width at a half maximum 

(HWHM); for dark beams, the contrast beam coefficient 

m = I/(IB + I) can be written as m = /(1 + ), where  = 

I/IB is commonly used for the parametrization of dark 

solitons.   

The one-carrier band transport model  

The photorefractive standard transition model assumes 

one dopant level (donors with density ND) and one 

compensatory level (acceptors with density NA). The rate 

equations for electrons can be written as 
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where e(x,t) = E(x,t)/Ea denotes the normalized electric 

field and LA = 0rEa/(qNA) - the characteristic length, S - 

photoionization cross-section [m2/J], n - electron density, 

 - electron mobility and  - recombination coefficient. In 

the case of low-intensity beams, we have n "ND
+, ND

+ − 

NA.  

 

Standard theory as a macroscopic approximation 

We aim to find a temporal equation for forming the 

space-electric field when the optical beam is abruptly 

Why phenomenological theory cannot be used to analyze the 

dynamics of dark photorefractive solitons 
 

Marek Wichtowski* 

Faculty of Electrical Engineering, West Pomeranian University of Technology, al Piastów 17, 70-310 Szczecin   

Received November 11, 2023; accepted December 25, 2023; published December 31, 2023 



doi: 10.4302/plp.v15i4.1244 PHOTONICS LETTERS OF POLAND , VOL. 15 (4), 63-65 (2023) 

http://www.photonics.pl/PLP © 2023 Photonics Society of Poland 

64 

switched on ( , ) ( ) ( )I x t I x t= , where (t) is the 

Heaviside step function. In the standard analysis of 

screening solitons, two strong assumptions are made: (1) 

LAe << 1 and (2) ND
+/t = 0 in set Eq. (2a) but not in 

Eq. (2b) [1, 2, 4]. In literature, the last statement is tried to 

be justified physically, but it is obviously inconsistent 

mathematically. Thus, the equation for the concentration 

of excited electrons is written as: 

 n(x,t)  SI(x)(t)(ND − NA)r,  (3) 

where r = 1/(NA) denotes the electron recombination 

time. Equation (3) reads that the distribution of free 

carriers is established immediately after the appearance of 

the optical beam. Combining Eq. (3) with (2a) and (2c), 

we arrive at the equation : 

 ( , ) / ( ) ( , ) / 1/
die die

e x t t u x e x t    + =  (4) 

with the normalized light intensity distribution given by 

u(x) = [Is(x) + IB]/(I∞ + IB). die is the dielectric relaxation 

time connected to the background illumination, i.e., die 

=0r/(qn), with n=n(x→). Equation (4) is commonly 

used for the temporal evolution description of the electric 

field in PR crystals for both bright and dark optical beams 

[1‒5]. The solution of Eq. (4) is: 

 

  ( )( , ) 1 / ( ) 1 1 / ( ) exp /
stand stand

e x t u x u x t = + − − . (5) 

According to Eq. (5), the electric field varies 

monotonously to the stationary state e(x,) = 1/u(x) with 

the standard response time stand = die/u(x). The essential 

point is that the presented scheme is, in fact, a 

phenomenological approach. Under the approximation 

(3), Eqs. (2a)-(2c) can be rewritten in terms of 

photoconductivity  and charge density , as: σ(x) = 

C·[Is(x) + IB], where C = /(I + IB), i.e., material 

photoconductivity is proportional to the light intensity, 

ρ/t = −J = −(E ) and E = ρ/ (Gauss law). It can 

be shown that these equations lead directly to Eq. (5). The 

macroscopic approach is simple and universal but 

approximate because it ignores microscopic parameters 

specific to different materials.  

The microscopic time evolution equation of the electric 

field  

It turns out that Eq. (4), resulting from the approximation 

(3), completely fails to consider the dynamics for dark 

beams. We will formulate a dynamic equation consistent 

with the model described by Eqs. (2a)‒(2c). Note that if 

we put ND
+/t = 0 in Eq.(2), then Eq. (2b)  implies n/t 

= 0 and J = 0. Following the physics of the charge 

transport process for dark beams, we can not assume n/t 

= 0, but we assume that the changes in the current density 

are small, i.e. J ~ 0. This is equivalent to the condition:   

 n(x,t)E(x,t)  nEa . (6) 

This is the crucial equation for the further analysis. By 

inserting (6) into the system (2a)‒(2c) after some algebra, 

one obtains the looked-for dynamic equation : 

 

 
( ) ( ) (1 )

A S A
L e t u x L e e


= −   +   ,  (7a) 

where 0/( )
S

r SI

= with r = NA/ND. (7b)  (7b) 

 

Stationary state 

As seen from Eq. (7a), the electric field distribution in a 

steady state regime is determined by the equation [3]: 

 ( ) ( ) ( ) 1
A

L e x u x e x = − . (8) 

The profiles e(x) calculated from Eq. (8) and the standard 

expression 1/u(x) can be significantly different, as shown 

in Fig. 2, taking into account the SBN crystal.  

 

 
Fig. 2. Spatial distributions of the internal normalized electric field 

formed in SBN crystals by a dark optical Gaussian beam with FWHM 

=10 μm. For a given value  = 25, we find a large discrepancy between 

the standard (1/u(x)) and microscopic solution – Eq. (8). 

 

Omitting the spatial shift, the analytical expression for the 

steady-state electric field distribution that correctly 

approximates the numerical solution may be written in the 

form: 

 
1 1

2( 1) 1
( )

approx

norm

e
I x


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 + − +
+ +

 
 
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, (9) 

where Inorm(x) = Is(x)/IB denotes the normalized beam 

intensity, = M(1 + M /10), M = max[1/u(x)]/max[e(x)]. 

Equation (9) is a counterpart of the phenomenological 

approximation estand = 1/u(x), where LA = 0 is assumed.  

Temporal evolution and microscopic time constant  

The time evolution Eq. (7a) does not have a closed 

analytical solution. However, we can get an approximate 

analytical solution as follows. It is known that in dark 

regions of the light distribution, the space-charge field 

increases quasi-exponential. Therefore, an approximate 

solution to Eq. (7) in analogy to Eq. (5) can be postulated 

as: 

 
  ( )( , ) ( ) 1 ( ) exp / ,

sc
e x t e x e x t 

 
 + − −  (10) 
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where e(x) =e(x,t→∞), e0, = e(x0, t→∞). 

 

To determine the total space-charge formation time, the 

point x0 = 0 (center of an optical beam) is taken, and the 

time constant can be presented as: 

 
( )( ) ( )

0 0 0 0
(1/ 2) 1 1 / 1

Ssc D D u u 


 + + − , (11) 

where S is given by Eq. (7b) and
0 0 0,

D u e


= . In the 

standard theory, the microscopic time constant replaces 

the macroscopic time constant stand = die/u(x). The 

differences between sc and stand can be unexpectedly 

significant. Figure 3 compares the values of both 

constants considering materials from three classes of PR 

crystals: SBN:60 (strontium-barium-niobate) - 

ferroelectric (large static dielectric constant εr ~ 1000 and 

electro-optic (EO) coefficient r33 ~ 100 pm/V, the 

dielectric relaxation time die ~ 1s for the light intensity of 

10 mW/cm2), BSO (bismuth silicon oxide) – sillenite 

crystal with fast PR effect (r ~ 100, with r41 ~ 10 pm/V 

and die ~ 1 ms) and GaAs:CrO2 – semiconductor (r ~ 10, 

the fastest material: die ~ 1 s but with small EO 

coefficient r41 ~ 1 pm/V).  

 

 
Fig. 3. Normalized time constant (/die) vs. the modulation index m for 

a dark beam. The time constant according to Eq. (11) is compared with 

the standard theory (/die = 1/u(x=0), taking the material parameters for 

BSO, SBN:60, and GaAs:CrO2 [3]. Points are the results of numerical 

calculations from the system of Eqs. (2a)‒(2c). 

 

It can be seen that the maximum differences between the 

numerical and approximate analytical results [Eqs. (10) 

and (11)] obtained for t = sc reach 50%. Simultaneously, 

discrepancies in the predictions between the microscopic 

and macroscopic theory may attain two orders of 

magnitude. 

 

 

 

Temporal wave equation for dark solitons 

Knowing the time dependence of the charge-space field 

given by  Eq. (10), we can write the paraxial wave 

equation as an explicit function of time. Traditionally, this 

equation is presented using the normalized complex 

amplitude  = (C/IB)1/2 and dimensionless coordinates  

= z/(kX0
2),  = x/X0, where k = 2/, X0 is the scale 

parameter which can be chosen arbitrarily. In a stationary 

state, the microscopic theory predicts a dark soliton 

profile similar to the standard theory. Therefore, we can 

apply Eq. (5) in practice. However, it is necessary to 

replace the standard time constant with the time constant 

(11). The resulting equation has the form [1, 5‒7]: 

( )
2

2

2 2

/1
1 | | e 0

2 | | 1

a t scB E
i

 
  

  

− 
+ − + + − =

  +
    (12) 

where
2 4

0
(1/ 2)( )

b eff
B kX n r= . 

Equation (12) yields the correct approximate dark soliton 

profile and formation time. This equation can be solved 

numerically by conventional beam propagation methods 

presented in other works [1, 5‒7].  

 

 

The article presents a novel description of the dynamics 

of (1+1)D dark beams, particularly dark screening 

solitons in PR materials consistent with the microscopic 

transport model. It was found that compared to the 

commonly used macroscopic theory, the differences in 

the results of both theories may be substantial. 

Experimental validation is still needed to confirm the 

results that were obtained. 
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