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Abstract—We present the use of two asymmetrical amplitude masks, 

for generating a tunable Gaussian filter. The two masks work as a pair. 

By introducing a lateral displacement, between the members of the pair, 

one can tune the width of the Gaussian filter. This tunable mask is 

useful for controlling unwanted oscillations in the MTFs, which are 

associated with the use of phase filters extending the depth of field. 

 

 

One can extend the depth of field of an optical system, 

by a two-step process. In the first step, denoted as pre-

processing, a spatial filter reduces the impact of focus 

errors on the modulation transfer function (MTF). In the 

second step, denoted as post-processing, a digital filter 

restores modulation losses on the gathered picture [1-2].  

 

Certain amplitude masks and some phase filters are 

useful for producing out-of-focus MTFs that do not have 

zeros inside their passband [3-16]. However, the out-of-

focus MTFs exhibit undesired oscillations around a 

tendency line.  

 

For reducing these spurious oscillations, on the MTFs, 

we proposed previously the use a Gaussian apodizer [17]. 

Here, we discuss an optical method for implementing a 

tuneable Gaussian filter, which can be used as an 

apodizer. 

 

For the sake of clarity our initial model is 1-D. 

However, at the end of the paper we give the 2-D 

formulas. As in previous publications, we use the Greek 

letter μ for representing the spatial frequency variable; the 

Greek letter Ω denotes the cut-off spatial frequency of the 

pupil aperture. Now, we propose to use the following pair 

of amplitude masks. It is convenient to start our 

discussion, by considering the amplitude transmittance of 

the first mask as 

 

 
3
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In Eq. 1, the lower case letter "a" denotes dimensionless 

damping factors of the Gaussian function. From Eq. 1, we 
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note that the length of the mask is 4Ω; and that 

T1(−2Ω)=1, while T1(2Ω)=e
-2a

. The amplitude 

transmittance of the of the second mask is  
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From Eq. 2, we recognize that the length of the mask is 

4Ω, and that T2(−2Ω)=e
-2a

, while T1(2Ω)=1. In Fig. 1 we 

depict schematically the two masks on top of the pupil 

aperture, which has a length equal to 2Ω.  

 

 
Fig. 1. Schematics of the two masks on the pupil aperture. 

We introduce a lateral displacement, 2σ; between the 

masks. The parameter σ varies from zero to Ω. Hence, 

Fig. 1 depicts the two extreme cases. Next, we recognize 

that the overall amplitude transmittance inside the pupil 

aperture is  

 

 1 2

μ
T(μ;σ)=T (μ σ)T (μ σ) rect( )

2Ω
- . (3) 

 

By substituting Eqs. 1 and 2 in Eq 3, we obtain 
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3 23 a σσ μ

-2a[1+( ) ] - ( ) ( )
2Ω 4Ω Ω

μ
T(μ;σ)=e e rect( )

2Ω
. (4) 

 

It is apparent from Eq. 4 that inside the pupil aperture, the 

overall amplitude transmittance varies as a Gaussian 

function. In Fig. 2, we depict the case σ = 0. In this case, 

we obtain a uniform attenuating window. 

 

 
Fig. 2. Amplitude transmittance for σ = 0. 

In Fig. 3, we depict the amplitude transmittances 

associated to the case σ >0.  

 

 
Fig. 3. Amplitude transmittance for σ > 0. 

For σ ≠ 0, it is relevant to identify the parameter μ0, 

known as the half width at half maximum.  

 

0

ln(2)
μ =2Ω

σ
3a ( )

Ω

.      (5) 

 

Hence, for the maximum displacement σ = Ω, the 

minimum value of μ0 is 

 

0

Ω
μ = 2ln(2)

πa
.      (6) 

 

Equation 6 is useful for setting the value of the 

dimensionless damping factor. For example, if μ0=Ω/3, 

then a=12 ln(2). Next, we recognize that the optical 

system suffers from focus errors. Then, generalized pupil 

function is 

 
2

μ
i2πW

Ω μ
P(μ;W;σ)=T(μ;σ)e rect

2Ω

 
 
   

 
 

.         (7) 

 

In Eq. 7, the upper case letter W is a shorthand notation 

for representing the 1-D version of Hopkins focus error 

coefficient, W2,0, in units of wavelength λ. That is, W = 

(W2,0/λ). See reference [18]. 

 

According to Ref. [19], all possible MTFs are suitable 

contained in the modulus of the ambiguity function of Eq. 

7. In Fig. 4, we show a set of images that display the 

variations of the ambiguity function modulus.  

 

 

Fig. 4. Modulus of the ambiguity function. 

For the numerical evaluation of Fig. 4, we use a cubic 

phase-mask [8], and the proposed tuneable Gaussian 

filter. The parameter σ changes from zero to 3Ω/4, in 

steps of Ω/4. We note that the proposed filter reduces the 

spurious oscillations on the ambiguity function. This 

feature is emphasized in Fig. 5, which shows a radial 

scanning of the ambiguity function, for obtaining the 

MTFs, for σ = 0, and σ = 3Ω/4. 
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Fig. 5. Radial scanning of the ambiguity functions. 

Finally, we report the 2-D version of the proposed filter. 

The amplitude transmittance of the first mask is 
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The amplitude transmittance of the second mask is 
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At the corners of the rectangular window, the 2-D masks 

have either maximum transmittance (equal to unity) or 

minimum transmittance [equal to exp(−8a)]. The 

amplitude transmittance of the proposed, 2-D filter is 

 

1 2

μ ν
T(μ,ν;σ)=T (μ+σ,ν)T (μ-σ,ν) rect( ) rect( )

2Ω 2Ω
.   (11) 

 

By substituting Eqs. 8 and 9 in Eq. 11, we obtain 

 

3 2 23 a σσ μ ν
-2a[1+( ) ] - ( )[ ( ) +( ) ]

2Ω 4Ω Ω Ω
μ

T(μ,ν;σ)=e e rect( )
2Ω

. (12) 

 

It is apparent from Eq. 11 that the overall amplitude 

transmittance varies as a 2-D, Gaussian function inside a 

rectangular window. 

 

Summarizing, we have presented the use of two amplitude 

masks, acting as a pair, for implementing a rectangular 

Gaussian filter. The width of the Gaussian function can be 

tuned by introducing a lateral shift between the members 

of the pair. We have reported analytical expressions for 

the 1-D version of the proposed filter; as well as analytical 

expressions for the 2-D version. We have indicated that it 

can be tuned to reduce the spurious oscillations on the 

MTF, which are produced by using phase filters that 

extend the depth of field. 

 

We express our gratitude to CoNaCyT, México, for 

financial support, through the research grant 157276.  
 

References 
 

[1] G. Hauesler, Opt. Commun. 6, 38 (1972). 

[2]  J. Ojeda-Castañeda, R. Ramos,  A. Noyola-Isgleas, Appl. Opt. 27, 

2583 (1988). 

[3] M. Mino, Y. Okano, Appl. Opt. 10, 2219 (1971). 

[4] J. Ojeda-Castañeda, L.R. Berriel Valdos, E. L. Montes, Opt. Lett. 

8(8), 458 (1983). 

[5] J. Ojeda-Castañeda, L.R. Berriel-Valdos, E. Montes, Opt. Lett. 

10(11), 520 (1985). 

[6] J. Ojeda-Castañeda, A. Díaz, Appl. Opt. 27, 4163 (1988). 

[7] J. Ojeda-Castañeda, L.R Berriel-Valdos, E. Montes, Appl. Opt. 

27(4), 790 (1988). 

[8] E.R. Dowski, T.W. Cathey, Appl. Opt. 34, 1859 (1995). 

[9]  H. Wang, F. Gan, Appl. Opt. 40, 5658 (2001). 

[10] N. George, W. Chi, J. Opt. A: Pure Appl. Opt. 5, S157 (2003). 

[11] A. Castro, J. Ojeda-Castañeda, Appl. Opt. 47(17), 1 (2004). 

[12] Á. Sauceda-Carvajal, J. Ojeda-Castañeda, Opt. Lett. 29(6), 560 (2004). 

[13] G. Mikula, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc, M. Sypek, 

Opt. Exp. 15, 9184 (2007). 

[14] J. Ojeda-Castaneda, J.E.A. Landgrave, C.M. Gómez-Sarabia, Appl. 

Opt. 47, E99 – E105 (2008). 

[15] J. Ares García, S. Bará, M. Gomez García, Z. Jaroszewicz, 

A. Kolodziejczyk, K. Petelczyc,  Opt. Exp. 16, 18371 (2008). 

[16] G. Muyo, A. Singh, M. Andersson, D. Huckridge, A. Wood, 

A.R. Harvey, Opt. Exp. 17(23), 21118 (2009). 

[17]  J. Ojeda-Castañeda, E. Yépez-Vidal, E. García-Almanza, Phot. Lett. 

Poland 2, 162 (2010). 

[18] H.H. Hopkins, Wave Theory of Aberrations (Oxford, 1950). 

[19] K.-H. Brenner, A.W. Lohmann, J. Ojeda-Castaneda, Opt. Comm. 77, 

89 (1982). 


