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Abstract—In this paper, a homogenization model is applied for 

analysis of the spectrum of natural modes in s finite-thickness slab of 

tilted metallic carbon nanotubes. Tilted anisotropy axis causes a 

difference between normal wave vector components for waves, 

propagating upward and downward with respect to slab interfaces. This 

asymmetry effect becomes very strong for hyperbolic media and results 

in the appearance of backward waves and accumulation points in the 

spectra of natural waves. 

 

 

Nowadays there is a rapidly growing interest and 

number of publications devoted to hyperbolic media 

(HM), i.e. media possessing hyperbolic-type dispersion in 

the space of wave vectors. Hyperbolic dispersion is 

inherent in uniaxial materials in which the axial and 

tangential components of a permittivity tensor have 

different signs [1], for the TEM waves in wire media [2], 

arrays of metallic carbon nanotubes [3]. Hyperbolic media 

(HM) exhibit such remarkable properties as a capability to 

support propagating waves with very large components of 

a wave vector and a very high electromagnetic density of 

states, which results in their potential applications in 

photonics because all physical processes associated with 

spontaneous emission become strongly enhanced [4,5]. 

Hyperbolic dispersion may cause the propagation of 

backward waves in magnetized ferrite films [6], in wire-

medium slabs [7] and finite-thickness slabs of vertically 

standing carbon nanotubes [8]. A strong and even giant 

enhancement of near-field thermal radiative heat transfer 

between two bodies in the presence of HM [9-13] seems 

to be promising for the creation of new types of thermo-

photovoltaic systems. 

In this paper we discuss the dispersion properties of 

waves propagating in slabs of single-wall metallic carbon 

nanotubes (CNT), tilted with respect to slab interfaces, see 

the schematic view in Fig. 1. We assume, for simplicity, 

that the CNT slab is grounded by the perfect electric 

conductor plane at z=0. Losses are neglected. A graphical 

method of determining the TM wave numbers of the 

surface wave modes is introduced, which clearly identifies 

different conditions of propagation, depending on the 

properties of the CNT slab. In the framework of an 
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effective medium theory, the arrays of CNTs, infinitely 

long in the z' direction and periodic in the x' and y' 

directions, can be described in terms of a permittivity 

dyadic 
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where εt  is the transversal component of the permittivity 

dyadic and ε'zz can is found using the effective medium 

model for arrays of metallic CNTs [8]. The quantum 

properties of individual CNTs are taken into account via 

the model of dynamic surface conductivity and effective 

boundary conditions [14]. Then, rotating by the angle  

around the y' axis, the permittivity dyadic is transformed 

to the coordinate system XOZ, associated with slab 

interfaces. The expression for the normal components kz 

of the wave vector is found from Maxwell equations and 

reads as [15] 
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where Δ=εxxεzz−εxz
2
 and kc

2
=k0
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εzz− kx

2
. It is remarkable 

that kz components can be strongly different for waves 

propagating upward and downward with respect to 

interfaces under fixed kx. By this reason, we term the 

media possessing such properties asymmetric hyperbolic 

media (AHM). Another value needed for any interface 

solution is the transverse wave impedance Z1,2, which for 

the TM waves reads as [15]: 
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where η = 120π . Then, using the 2×2 transfer matrix 

[M], suitable for asymmetric and non-reciprocal media 

(see [15]), we obtain the dispersion equation in the form: 
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Formula (4) can be simplified to: 
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where Z0 and 
zk are defined respectively by: 
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We consider a grounded CNT indefinite medium slab of 

thickness h=0.3λ0 (f0=20THz) in free space [9]. The 

diagonal components of the permittivity dyadic εxx and εzz 

become zero at the frequency f0. The grounded slab of 

HM may support surface-wave modes with respect to the 

direction of propagation (x-direction). The TM modes 

(with the electric field perpendicular to the ground) 

interact with the CNT when propagating as in the 

grounded slab. Here we present a graphical solution of the 

dispersion Eq. (5) involved to determine the values of the 

TM wave numbers. In using this graphical technique, we 

also determine the number of possible modes and whether 

a particular mode has a cutoff or not. 

In particular, surface waves have a purely imaginary 

transverse wavenumber in free space with kz0 = −jαz0 for 

proper surface waves (αz0 > 0). Eliminating kx from 

Eqs. (6)-(7) and multiplying both sides of the result by h
2
 

gives: 
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where R1 and R2 are defined respectively by: 
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which is the equation of a hyperbola in the ξh, kz
'
h plane 

(see Fig. 2). One can show that Eq. (5) can be rewritten as 
 

 tan( )z zh k h k h    , (11) 

 

which is also plotted in Fig. 2. Equations (8) and (11) 

constitute a set of simultaneous transcendental equations 

which must be solved for the ξh and kz
'
h. A graphical 

representation of the solutions is shown in Fig. 2. The 

intersection of these curves implies a solution to both 

Eq. (8) and Eq. (11). We can see that ξh may be positive 

or negative for proper (kz0 = −jαz0) or improper (kz0 = jαz0) 

mode, respectively. Since the hyperbola intersects more 

than one branch of the tangent function, implying that 

more than one TM mode can propagate. If we know the  
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(b) 

Fig. 2. Graphical solution of transcendental equations for TM 

wave mode of the grounded CNT slab with thickness h=0.3λ0 at 

frequencies below (a) and higher (b)  than f0 = 20 THz. The 

considered slab is similar to [9] except loss which is removed. 

 
Fig. 1. Schematic view of an indefinite-medium slab with a 

tilted optical axis. 
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 ξh and kz
'
h from graphical solution then the kx can be 

found as: 
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The numerical solution of  Eqs. (8) and (11) for TM 

modes is shown in Fig. 3. Each branch of the tangent 

function is one of TM modes (see Fig. 3(b)). The 

frequency f0 is the limiting point for the cutoff frequencies 

of a countable spectrum of modes propagating in the HM 

slab. It is explained by a high value of the tangent 

argument kz
'
h, that causes rapid oscillations of this 

function in the vicinity of f0. As can be seen from 

Fig. 2(b), if the frequency increases, the hyperbola curve 

shifts to such an extent that it does not intersect with some 

branches of the tangent curves, which means that we have 

a higher cutoff frequency for those branches (modes). We 

can also see this effect in Fig. 3(c), where modes 

propagate below f0  and these modes are backward modes. 

Again, when the frequency is higher than 20 THz, the 

hyperbola curve shifts toward the centre and the forward 

TM modes have lower cut-off frequencies. We can see 

this effect in Fig. 3(a). 
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Fig. 3. Wave propagation constant for a grounded CNT slab with 

thickness h=0.3λ0 at frequencies below (a), near (b) and higher (c)  

than f0 = 20 THz. The considered slab is similar to [9] except loss 

which is removed. 


