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Abstract—The paper presents a systematic analysis of the influence 

of nonlinear absorption/gain phenomena on a Gaussian wave field 

evolution in the Kerr type medium with additional consideration of 

initial light beam convergence and divergence. To perform an efficient 

analysis of joint contribution of initial curvature of a wave front and 

nonlinear absorption/gain effects on self-focusing/self-defocusing 

phenomena I propose to apply the method of complex geometrical 

optics (CGO) which at once reduces Gaussian beam diffraction and self-

action effects (including nonlinear absorption/gain) to the domain of 

ordinary differential equations (ODEs), which are base (output) 

equations. The description in output ODEs results in CGO’s great 

superiority over well known analytic methods of nonlinear optics such 

as: the variational method and the method of moments which every time 

require solving Nonlinear Schrodinger Equation (NLS) by applying an 

integral variational procedure or virial theory to obtain equations 

describing the evolution of amplitude, beam width and wave front 

curvature, which happen to be identical with those obtained by the CGO 

method. The CGO method dealing with output ODEs is a time- 

consuming physical approach compared to numerical methods of 

nonlinear and wave optics. CGO with output evolutionary ODEs 

enables one to apply basic mathematical computer software such as: 

Matlab/Octave, Mathcad and Mathematica commonly available at every 

university, college or secondary school nowadays.  

 

 

Real optical media exhibit absorption, which changes the 

properties of light propagating in nonlinear optical fibres 

and modifying essentially the conditions to achieve stable 

propagation of electromagnetic spatially limited modes 

[1]. However, despite the presence of dissipation effects 

which can be both linear and nonlinear it is still possible 

to obtain stable solutions in the form of dissipative 

solitons propagating in loss/gain magneto-optics systems, 

semiconductor optical amplifiers, reaction-diffusion 

media and Bose-Einstein condensates [2].  

Thus, let me analyze first the influence of a nonlinear 

dissipative/gain profile when a Gaussian beam propagates 

in a classical optical medium with cubic nonlinearity. In a 

nonlinear medium of the Kerr type, the relative 

permittivity ε can be presented in the form: 

 
2

0 ,NL u      (1) 

where, in general, both 
0 0 0 0 0Re Im R Ii i          

and Re Im R I

NL NL NL NL NLi i          can be 

complex-valued parameters, this way defining linear 0

I   

and nonlinear absorption 
I

NL  or gain  I

NLi  . 

Quantity R

NL  represents self-focusing and 
R

NL   

describes the self-defocusing effect. The role and practical 

application of the self-defocusing effect in contemporary 

optical applications are demonstrated in the paper [3]. In 

Eq. (1) the quantity u represents a complex wave field, 

which in the case of the CGO method is a Gaussian beam 

in the form: 

 2

0 0( , ) exp ( ) / 2 ,u z A ik z B z     
 

             (2) 

where B=B(z) is a complex parameter changing along 

propagation distance (z axis), which allows me to pack 

two observables in a single complex function in the form: 

 
 2

0

Re Im ,
i

B B i B z
k w z

                      (3)    

where  z    is the wave front curvature,  w w z  is 

the beam width, 0

2
k

c

 
 


 is the linear wave number 

for the light beam propagating in the z direction in 

vacuum and 2 2x y    is the distance from the z axis in 

cylindrical coordinates (ρ, z) defining the geometry of a 

3D optical nonlinear medium. It should be also 

emphasized that within geometrical optics description, the 

CGO method included, the wave field u = u(ρ, z) in Eq. 

(2) should represent an electromagnetic wave being 

localized in the vicinity of propagation direction, which in 

our case is described by the z-axis in cylindrical 

coordinates (ρ, z). Moreover, the localization of the wave 

field u = u(ρ, z)  along the fibre axis means that the 

Gaussian field in Eq. (2) should be spatially narrow along 

the z-axis, which suggests the usage of a paraxial 

approximation natural for the methodology of geometrical 

optics. This way the application of a paraxial 

approximation within the CGO method, which embraces 

some wave phenomena (Gaussian beam diffraction and 

nonlinear self-action effects though CGO equations - 

eikonal and transport equations - are purely of the 

geometrical optics character [4]), lets me define the 

amplitude of the Gaussian beam to be dependent only on 

the propagation coordinate z. This way one obtains in Eq. 

(2) that A = A(z). Moreover, the CGO method deals not 

only with complex eikonal 
2

0 ( ) / 2z B z      
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determined by the complex parameter B in Eq. (3), which 

embraces the evolution of two observables: a Gaussian 

beam width and a wave front curvature packet into a 

single complex function B = B(z), but also with a complex 

amplitude 
( )( ) ,i zA A z e   which includes the evolution 

of power flow (in our case expressed in Gaussian units) 

along the z-axis: 
22( ) ( ) c / 8P w z A z  (parameter c 

denotes the light velocity) together with an additional 

phase (Gouy phase) φ = φ(z), which shows the difference 

between the wave motion of a plane wave and a spatially 

limited beam, such as a Gaussian wave field. Taking into 

account the permittivity profile defined in Eq. (1), one can 

notice that the wave number in nonlinear dissipative/gain 

media is complex-valued: 

   
2

0 0 0 0 ,R I R I

NL NLk k k i i u                     (4) 

where  
2 2 2~ expu w . But, when we neglect the 

influence of linear damping (
0 0I   ) determining the 

area on an absorption curve where the linear optical 

medium is transparent (see [5-7]), one can notice that 

despite the fact that the wave number k defined in Eq. (4) 

is, in general, a  complex-valued quantity, the propagation 

constant ( 0, )zk k z    (e.g. the component of a wave 

vector, where the maximum intensity is propagated) is 

real. Nowadays, there are many papers concerning 

nonlinear optics discussing the joint influence of linear 

and nonlinear absorption processes (embracing two-

photon absorption phenomenon) on the self-focusing of a 

Gaussian light beam. For instance, a number of numerical 

examples describing and discussing this problem are 

presented in the paper [6]. However, in the author’s 

opinion it is very difficult to capture, in fact, the role of 

nonlinear absorption in a nonlinear self-focusing medium 

when linear dissipation dominates over nonlinear, which 

is demonstrated by the results in paper [6]. Thus, in the 

author’s opinion the only reasonable way to answer how a 

nonlinear absorption phenomenon influences self-

focusing/self-defocusing effects is to neglect at once the 

influence of a linear absorption effect, searching for the 

area on the absorption curve where the linear optical 

medium is transparent. This way, neglecting the influence 

of linear damping and substituting 
0 0I    into Eq. (1) the 

author of the present paper describes analytically the 

evolution of a Gaussian light beam propagating along the  

z axis in a nonlinear self-focusing/ self-defocusing 

medium in the presence of (nonlinear) two-photon 

absorption. This way, when 
0 0I    permittivity profile 

takes the following form:  

 
2

0 .R R I

NL NLi u                            (5) 

The meaning and practical role of a two-photon 

absorption effect within the effect of spatial soliton 

formation in a nonlinear medium of the Kerr type are 

demonstrated in the paper [5]. Following the procedure 

described in the book [4], to obtain CGO ODEs 

evolutionary equations, the author derived the first 

complex Riccati equation for linear and nonlinear 

dissipative/gain media for function B in the form: 

 
 

2 2

2

0 4

(0) 0
.R R I

NL NL

A wdB
B i

dz w
             (6) 

Taking into account the case when the permittivity profile 

describing light propagation in a nonlinear absorptive/gain 

fiber is equal to  
2

0

R R I

NL NLi u         and 

substituting the complex eikonal 
2

0 ( ) / 2R z B z      

into the transport (intensity) equation: 

2div( ) 0,A                                 (7) 

the following equation was obtained: 

22
0

2

1
0.

2

I

NLk udA
A

dz z z

      
      

       

    (8) 

Using paraxial approximation to above equation in 

Eq. (8), the author expands the wave field |u|
2
 in the 

Taylor series in ρ in the vicinity of the fiber symmetry z-

axis up-to a quadratic term, which means that the 

Gaussian wave field |u|
2
 is spatially narrow, which in turn 

is an indispensable assumption to describe light 

propagation within the regularities of geometrical optics, 

including the CGO method presented in this paper. Thus 

one can notice that the quadratic term in the Taylor 

expansion essentially dominates over the higher-order 

ones, resulting in the described electromagnetic field |u|
2
 

localized along the propagation (fibre) axis (z). With the 

CGO condition for the wave field |u|
2
 to be spatially 

narrow, let us substitute in Eq. (8) the radial coordinate as 

equal to zero ρ = 0. As a result, the following connection 

was obtained: 

   
2 22 2(0) (0) .w z A z w A                    (9) 

Regarding the above expression, let us formulate the 

following regularity: Nonlinear absorption/gain effects do 

not influence the component of the Poynting vector along 

which the maximum of electromagnetic wave field 

(maximum of the intensity) propagates. In our case, the 

application of axial geometry in (ρ, z) coordinates to 

describe electromagnetic problem when the Gaussian field 

propagates along fibre axis means that the z-component of 

the Poynting vector (averaged in time for harmonic time 
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dependence i te  ): 
zS  is conserved in a nonlinear 

optical medium despite the presence of the nonlinear 

absorption effect (for instance two-photon or multi-photon 

absorption). Taking into account Eq. (9), the CGO 

equation for the Gaussian beam width evolution in a self-

focusing medium with a contribution of nonlinear (two-

photon) absorption/gain effects takes the form:  

        
2 42 2 4 2 4

2
0 0

0 2 2 3

0

4 1 0 0 0 0
,

4

R I

NL NL
R

k A w k A wd w

dz k w

   
      (10) 

where w(0) = w(z=0) is the initial width and A(0) = A(z=0)  

is the initial complex amplitude of a wave field. It is worth 

presenting Eq. (10) describing the evolution of 

dimensionless beam width f = w/w(0):  

42 22
0

2 3 2 2

0

(0)1 1 1
,

4

I

NL

R

NL D

k Ad f

dz f L L

 
   

 
 

        (11) 

defining: diffraction distance  2

0 0 0R

DL k w   and 

nonlinear length in the form: 

    
2

00 / 0R R

NL NLL w A   . 

To modify Eq. (11) to a more representative form, the 

author applies the relation:  

2

2
,D

NL crit

L P

L P
                              (12) 

where    
22

0

1
0 0

8

RP c w A   is the total beam power 

along the z–axis and 
0

2

0

1

8

R

crit R

NL

c
P

k





 is the critical power 

when the Gaussian beam propagates along the reference 

trajectory – fiber axis. Let us recall that when the total 

beam power is equal to critical, the Gaussian wave field 

collapses in a nonlinear Kerr type medium without any 

contribution of dissipation/gain effects. Using Eq. (12), 

the analytical solution of Eq. (11) has the following 

form:

   
42 22

02 2 2 2

2

(0)
0 1 2 0 1,

4

I

NL

D D

D crit

k Az P
f L L z

L P

 
        

 
 

(13) 

where  

 
2

00 (0) (0) .I

NLk A                     (14) 

The parameter  0  determines the joint influence of 

two processes: initial wave front curvature and nonlinear 

absorption/gain effects on Gaussian wave field evolution. 

These two effects can be at once included by introduction 

of a single convenient quantity  0 , which simplifies 

essentially the wave description in nonlinear active/ 

dissipative optical media. The solution in Eq. (13) can be 

written next in a more convenient algebraic form: 

 
2 42 2 2

02 2

0

(0)0
1 1 .

4

I

NL

D

crit D

k AP z
f z L

P L

   
      
      

         (15) 

One can notice that a stationary solution is possible when 

2

0(0) (0) .I

NLk A                 (16) 

This means that the wave mode possesses some specific 

properties when it propagates in nonlinear dissipative/gain 

media. Namely, the stationary wave mode propagates in a 

nonlinear absorptive/gain medium having a curved wave 

front which curvature is amplitude dependent. From 

Eq. (15) the author determines also the self-trapping 

power for the Gaussian wave mode as equal to:  

42 2

02
(0)

1 .
4

I

NL

crit D

k A
P P L

 
  

  

                 (17) 

The CGO solution for a self-defocusing medium has the 

form: 

 
2 42 2 2

02 2

0

(0)0
1 1 .

4

I

NL

D

crit D

k AP z
f z L

P L

   
      
      

    (18) 
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