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Abstract—uUniform scattered fields of a cylindrical wave from a

parabolic surface are obtained with the theory of the boundary — N

diffraction wave (TBDW). A non-uniform diffracted field is calculated upp) = #[VQ x W, P)].ndS. €y
with a regenerated vector potential and rearranged by considering the S

Fresnel function to obtain a uniform solution. Uniform scattered fields
are calculated as the sum of diffracted and geometrical optic fields.
Numerical analyses of diffracted and scattered fields in both uniform
and non-uniform solutions are in harmony with the literature.

It is Fresnel who explained the diffraction phenomena
from the perspective of wave theory in 1818. Fresnel
expanded Huygens’ study basing on possible interference
of waves, which is known as the Huygens-Fresnel
principle. Kirchoff revealed the mathematical basics in
the following years [1]. The theory of boundary
diffraction wave, which is a widely used approach for
calculating diffracted fields from aperture systems [2—4],
is considered to be the refinement of Young's ideas on the
nature of diffraction [5]. The first formulation of the
theory of boundary diffraction wave (TBDW) was
introduced by Maggi-Rubinowicz considering Young's
ideas [6—7]. They independently showed that Helmholtz-
Kirchhoff’s integral can be converted into a line integral
representing edge diffracted fields. The general case of
the Maggi-Rubinowicz formulation was expressed by
Miyamoto and Wolf for planar and spherical incident
fields [8-9].

In this study, the diffracted field of a cylindrical incident
field from an opaque parabolic surface is obtained with
TBDW for the first time. To our best knowledge, such a
solution does not exist in the literature. First, the non-
uniform diffracted field is calculated with a regenerated
vector potential. Then, the non-uniform result is
rearranged by considering the Fresnel integral to obtain a
uniform solution. _

The time factor e "™ is assumed and suppressed
throughout the paper.

For an observation point P, the scalar electrical or
magnetic field variation in the Helmholtz-Kirchoff
integral can be given as [10]:
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The geometry of TBDW can be seen in Fig. 1, where
U(P) is the solution of the homogenous Helmhotz-
Kirchoff integral. This integral can be divided into two
parts by applying the Stokes theorem:

up) = f W (QP).dl+ ) lim f W (Qu,P).Idl, (2)

here the first term corresponds to the diffracted field,
while the second term shows the geometrical optic field.
The vector potential in the equation can be given as [11]:

_ U;(Q)G sin(R, R)é,

w(Q,pP) = 4m[1+ cos(R,R;)] Y

The diffraction geometry for an opaque parabolic
surface in the domain of a linear current source is given in
Fig. 2.
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Fig.1. Geometry of the Boundary Diffraction Wave Theory.
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Fig. 2. Diffraction Geometry of the Opaque Parabolic Surface.

As can be seen in Fig. 2, f is the focal length and Q is the
diffraction point at which:

P = )

- 1+coseg

Here U;(Q)can be written as:

Ui(@) = g S )
Vi

The other parameters in Eq. (3); the Green function is

> »

—JkR . . . . .
equal to eT and“e,;” is the unit vector in the direction of

diffraction. The vector potential can be simplified further
by the following equation [12]:

i) oos
1+ cos(R,R;) 2

Rearranging the terms in Eqg. (3), the new vector potential
can be given as:

= _ - e—ikp' g=jkR d—do
W= —-¢,u; py tan( 5 ) (6)

The diffracted field can be easily derived as:

1 ¢ _ (;bO e—jkp' e JkR
Ug(P) = —ui—tan< ) d, ()
2 2 ) o) R
T kp ]

by considering Egs. (1) and (6) for an opaque parabolic
surface. Using the Hankel function to obtain a simplified
result, the solution can be written as:

o
_ o, 1 -\ e~ TkP eikP1eTT
Ug(P) = —u; 3= tan (%5 )W T (®)

The non-uniform diffracted field solution can be
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transformed into a uniform result using the Fresnel
function [13-14]:

e~ (E+m/4)

F@©) = R

€))

Here “€” is the detour parameter, representing the phase
difference between the incident and diffracted fields,
which can be written as [15-16]:

& = —,/2kp; cos (d) —2¢0)_ (10)
Using the asymptotic relation

F(©) = F(gDsgn(®), 1D

the uniform diffracted field expression can be obtained as

Ug(P)
. b0y i (= B0\ €T
=1 Jjkp1 cos(p—go)
= wF(1gDsgn()e in(*57) 0 (2
Here the Fresnel integral can be given as [17]:
ejﬂ/4 co g
F() =———| e/t dt. 13
® N ) e (13)

The total scattered fields can be given as the sum of the
diffracted and incoming fields and can be easily found as:

a-ikp
Us(P) = uj[——=u(-9)

N
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e—ikp’

o)

+F([g])sgn(g) /s cos@—b0) sin (2-2) (14)

To consider the numerical results, |u;| =1, f= 0.5m,
incoming surface angle ¢, = m/4 has been chosen. The
other parameters are chosen appropriately for real
problems such that k = 8w and p = 1007 [18-19].

Using the variables in Eq. (8) gives a non-uniform
character of the diffracted field as can be seen in Fig. 3. In
this figure the diffracted field yields an infinite result at
the shadow boundary where ¢ = + ¢,.
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Fig. 3. Non-uniform Diffracted Fields.

Plotting Eq. (12), using the same variables as in Eq. (8),
the uniform characteristic of the diffracted field can be
seen in Fig. 4. It is obvious that there is no infinite value
of the diffracted field.
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Fig. 4. Uniform Diffracted Fields.
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Fig. 5. Uniform Scattered Fields.
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Figure 5 demonstrates the variation of total uniform
scattered fields, given in Eq. (14), versus the observation
angle.

It should be noted that for Fig. 3, Fig. 4 and Fig. 5 the
same observation is valid for all the angles of the edge
incidence (¢,) and holds true also for all values of (kp).

The contribution of this study is that a uniform
diffracted field from the edge of an opaque parabolic
surface is calculated with the boundary diffraction wave
theory for the first time. At first, a non-uniform diffracted
field is found. Then, the non-uniform result is converted
to a uniform shape by using the Fresnel integral. Finally,
scattered fields are calculated in a uniform structure.
Additionally, numerical analyses of the uniform and non-
uniform solutions of diffracted and scattered fields are
made in the paper. It can be proved that the non-uniform
and the uniform solutions for the diffracted and scattered
fields shown in Fig. 3, Fig. 4 and Fig. 5 are in good
agreement with the literature [11, 20, 21].
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