Supermode spatial solitons via competing nonlocal nonlinearities
DOI:
https://doi.org/10.4302/plp.v10i2.827Abstract
We study spatial soliton formation in a system with competing nonlinearities. In doing so, we consider a specific nonlinear response that involves both focusing and defocusing nonlocal contributions. We demonstrate that at a sufficiently high input power level, the interplay between these nonlocal nonlinearities may lead to the formation of in-phase, two-hump, fundamental spatial solitons. The conditions required for the existence of these two-peak spatial solitons are also presented.Full Text: PDF
References
- G. Stegeman and M. Segev, "Optical Spatial Solitons and Their Interactions: Universality and Diversity", Science 286, 1518 (1999). CrossRef
- Y. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego, 2003).
- P. Varatharajah et al., "Stationary nonlinear surface waves and their stability in diffusive Kerr media", Opt. Lett. 13, 690 (1988). CrossRef
- G. Assanto and M. Peccianti, "Spatial solitons in nematic liquid crystals," IEEE J. Quantum Electron. 39, 13 (2003). CrossRef
- G. Assanto, ed. Nematicons: Spatial Optical Solitons in Nematic Liquid Crystals (Wiley, 2012). CrossRef
- O. Bang, W. Krolikowski, J. Wyller, J.J. Rasmussen, "Collapse arrest and soliton stabilization in nonlocal nonlinear media", Phys. Rev. E 66, 046619 (2002). CrossRef
- X. Hutsebaut, C. Cambournac, M. Haelterman, A. Adamski, K. Neyts, "Single-component higher-order mode solitons in liquid crystals," Opt. Commun. 333, 211 (2004). CrossRef
- C. Conti, M. Peccianti, and G. Assanto, "Route to nonlocality and observation of accessible solitons," Phys. Rev. Lett. 91, 073901 (2003). CrossRef
- U. A. Laudyn, P. S. Jung, M.A. Karpierz, and G. Assanto, "Quasi two-dimensional astigmatic solitons in soft chiral metastructures," Sci. Rep. 6, 22923 (2016). CrossRef
- U. A. Laudyn, P. S. Jung, M. A. Karpierz, G. Assanto, "Power-induced evolution and increased dimensionality of nonlinear modes in reorientational soft matter," Opt. Lett. 39(22), 6399–6402 (2014). CrossRef
- Y. V. Izdebskaya, V. G. Shvedov, P. S. Jung, and W. Krolikowski, "Stable vortex soliton in nonlocal media with orientational nonlinearity," Opt. Lett. 43, 66-69 (2018) CrossRef
- P.S. Jung, W. Krolikowski, U.A. Laudyn, M. Trippenbach and M.A. Karpierz, "Supermode spatial optical solitons in liquid crystals with competing nonlinearities", Phys. Rev. A 95, 023820 (2017) CrossRef
- P.S. Jung, W. Krolikowski, U.A. Laudyn, M.A. Karpierz and M. Trippenbach, "Semi-analytical approach to supermode spatial solitons formation in nematic liquid crystals", Opt. Express 25, 23893 (2017) CrossRef
- S. Jungling and J. C. Chen, "A study and optimization of eigenmode calculations using the imaginary-distance beam-propagation method", IEEE J. Quantum Electron. 30, 2098 (1994). CrossRef
- P.S. Jung, K. Rutkowska and M.A. Karpierz, "Evanescent field boundary conditions for modelling of light propagation", Journal of Computational Science 25, 115 (2018) CrossRef
- A.A. Hardy, W. Streifer, "Coupled mode theory of parallel waveguides," IEEE J. Lightwave Techn. LT-3, 1135 (1985) CrossRef
- M. Matuszewski, B.A. Malomed, and M. Trippenbach, "Spontaneous symmetry breaking of solitons trapped in a double channel potential," Phys. Rev. A 75, 063621 (2007) CrossRef
Downloads
Published
2018-06-30
How to Cite
[1]
P. S. Jung, M. Karpierz, M. Trippenbach, D. Christodoulides, and W. Krolikowski, “Supermode spatial solitons via competing nonlocal nonlinearities”, Photonics Lett. Pol., vol. 10, no. 2, pp. 33–35, Jun. 2018.
Issue
Section
Articles