Study of the hyper-Rayleigh scattering first hyperpolarizability of a chalcone derivative in various solvent media

Authors

  • Adailton N. De Castro Universidade Paulista
  • Loyanne C. P. Da Silva Universidade Estadual de Goiás
  • Francisco A. P. Osório Universidade Federal de Goiás
  • Basilio Baseia Universidade Federal de Goiás
  • Clodoaldo Valverde Universidade Estadual de Goiás http://orcid.org/0000-0002-1656-4981

DOI:

https://doi.org/10.4302/plp.v11i4.892

Abstract

In this work we investigate the solvent media effects on the nonlinear optical properties of a chalcone derivative, (2E)-3-(3-methylphenyl)-1-(4-nitrophenyl) prop-2-en-1-one (3MPNP), using the polarizable continuum model (PCM) at DFT/B3LYP/6-311+G(d) level. The behavior of the hyper-Rayleigh scattering first hyperpolarizability and the average second hyperpolarizability, are studied as function of the dielectric constant of the solvent medium in both dynamic and static cases.

Full Text: PDF

References
  1. L. R. Almeida et al., "Synthesis, structural characterization and computational study of a novel amino chalcone: a potential nonlinear optical material", New J. Chem., vol. 41, no. 4, pp. 1744-1754, 2017. CrossRef
  2. P. K. Murthy et al., "An analysis of structural and spectroscopic signatures, the reactivity study of synthetized 4,6-dichloro-2-(methylsulfonyl)pyrimidine: A potential third-order nonlinear optical material", J. Mol. Struct., vol. 1186, pp. 263-275, Jun. 2019. CrossRef
  3. J. Kongsted, A. Osted, K. V Mikkelsen, and O. Christiansen, "“Second harmonic generation second hyperpolarizability of water calculated using the combined coupled cluster dielectric continuum or different molecular mechanics methods", J. Chem. Phys., vol. 120, no. 8, pp. 3787-98, Feb. 2004. CrossRef
  4. T. L. Fonseca, J. R. Sabino, M. A. Castro, and H. C. Georg, "A theoretical investigation of electric properties of L-arginine phosphate monohydrate including environment polarization effects", J. Chem. Phys., vol. 133, no. 14, pp. 1-8, 2010. CrossRef
  5. A. KARAKAŞ, Z. E. KOÇ, M. FRIDRICHOVÁ, P. NĚMEC, and J. KROUPA, "THE INVESTIGATION OF SECOND-ORDER NONLINEAR OPTICAL PROPERTIES OF P-NITROPHENYLAZOANILINE: SECOND HARMONIC GENERATION AND AB INITIO COMPUTATIONS", J. Theor. Comput. Chem., vol. 11, no. 01, pp. 209-221, Feb. 2012. CrossRef
  6. T. Seidler, K. Stadnicka, and B. Champagne, "Second‐order Nonlinear Optical Susceptibilities and Refractive Indices of Organic Crystals from a Multiscale Numerical Simulation Approach", Adv. Opt. Mater., vol. 2, no. 10, pp. 1000-1006, Oct. 2014. CrossRef
  7. L. M. G. Abegão et al., "Second- and third-order nonlinear optical properties of unsubstituted and mono-substituted chalcones", Chem. Phys. Lett., vol. 648, pp. 91-96, Mar. 2016. CrossRef
  8. W. F. Vaz et al., "Synthesis, characterization, and third-order nonlinear optical properties of a new neolignane analogue", RSC Adv., vol. 6, no. 82, pp. 79215-79227, 2016. CrossRef
  9. C. Valverde et al., "The solid state structure and environmental polarization effect of a novel asymmetric azine", New J. Chem., vol. 41, no. 19, pp. 11361-11371, 2017. CrossRef
  10. P. N. Prasad, D. J. Williams, and others, Introduction to nonlinear optical effects in molecules and polymers, vol. 1. Wiley New York etc., 1991. DirectLink
  11. P. Günter, Nonlinear Optical Effects and Materials, 4th ed. Berlin: Springer Berlin Heidelberg, 2000. CrossRef
  12. H. Inan et al., "Photonic crystals: emerging biosensors and their promise for point-of-care applications", Chem. Soc. Rev., vol. 46, no. 2, pp. 366-388, 2017. CrossRef
  13. H. J. Chang et al., "Chiral Nonlinear Optics in Oxides, Polymers and Liquid Crystals", J. Korean Phys. Soc., vol. 43, no. 4, p. 587, 2003. DirectLink
  14. R. Bersohn, Y. Pao, and H. L. Frisch, "Double‐Quantum Light Scattering by Molecules", J. Chem. Phys., vol. 45, no. 9, pp. 3184-3198, Nov. 1966. CrossRef
  15. K. Clays and A. Persoons, "Hyper-Rayleigh scattering in solution", Phys. Rev. Lett., vol. 66, no. 23, pp. 2980-2983, 1991. CrossRef
  16. J. Campo, F. Desmet, W. Wenseleers, and E. Goovaerts, "Highly sensitive setup for tunable wavelength hyper-Rayleigh scattering with parallel detection and calibration data for various solvents", Opt. Express, vol. 17, no. 6, p. 4587, Mar. 2009. CrossRef
  17. S. R. Prabhu, A. Jayarama, K. Chandrasekharan, V. Upadhyaya, and S. W. Ng, "Synthesis, growth, structural characterization, Hirshfeld analysis and nonlinear optical studies of a methyl substituted chalcone", J. Mol. Struct., vol. 1136, pp. 244-252, May 2017. CrossRef
  18. K. Clays and A. Persoons, "Hyper‐Rayleigh scattering in solution", Rev. Sci. Instrum., vol. 63, no. 6, pp. 3285-3289, Jun. 1992. CrossRef
  19. K. Clays et al., "Nonlinear Optical Properties of Proteins Measured by Hyper-Rayleigh Scattering in Solution", Science (80-. )., vol. 262, no. 5138, pp. 1419-1422, Nov. 1993. CrossRef
  20. M. Frisch et al., Gaussian, Inc., Wallingford CT, 2009. DirectLink
  21. J. M. F. Custodio et al., "Chalcone as Potential Nonlinear Optical Material: A Combined Theoretical, Structural, and Spectroscopic Study", J. Phys. Chem. C, vol. 123, no. 10, pp. 5931-5941, Mar. 2019. CrossRef

Downloads

Published

2019-12-31

How to Cite

[1]
A. N. D. Castro, L. C. P. D. Silva, F. A. P. Osório, B. Baseia, and C. Valverde, “Study of the hyper-Rayleigh scattering first hyperpolarizability of a chalcone derivative in various solvent media”, Photonics Lett. Pol., vol. 11, no. 4, pp. 96–98, Dec. 2019.

Issue

Section

Articles