Photonic Liquid Crystal Fibers – 15 years of research activities at Warsaw University of Technology

Authors

  • Tomasz Woliński
  • Sławomir Ertman Faculty of Physics, Warsaw University of Technology
  • Katarzyna Rutkowska
  • Daniel Budaszewski
  • Marzena Sala-Tefelska
  • Miłosz Chychłowski
  • Kamil Orzechowski
  • Karolina Bednarska
  • Piotr Lesiak

DOI:

https://doi.org/10.4302/plp.v11i2.907

Abstract

Research activities in the area of photonic liquid crystal fibers carried out over the last 15 years at Warsaw University of Technology (WUT) have been reviewed and current research directions that include metallic nanoparticles doping to enhance electro-optical properties of the photonic liquid crystal fibers are presented.

Full Text: PDF

References
  1. T.R. Woliński et al., "Propagation effects in a photonic crystal fiber filled with a low-birefringence liquid crystal", Proc. SPIE, 5518, 232-237 (2004). CrossRef
  2. F. Du, Y-Q. Lu, S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber", Appl. Phys. Lett. 85, 2181-2183 (2004). CrossRef
  3. T.T. Larsen, A. Bjraklev, D.S. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres", Opt. Express, 11, 20, 2589-2596 (2003). CrossRef
  4. T.R. Woliński et al., "Tunable properties of light propagation in photonic liquid crystal fibers", Opto-Electron. Rev. 13, 2, 59-64 (2005). CrossRef
  5. M. Chychłowski, S. Ertman, T.R. Woliński, "Splay orientation in a capillary", Phot. Lett. Pol. 2, 1, 31-33 (2010). CrossRef
  6. T.R. Woliński et al., "Photonic liquid crystal fibers — a new challenge for fiber optics and liquid crystals photonics", Opto-Electron. Rev. 14, 4, 329-334 (2006). CrossRef
  7. T.R. Woliński et al., "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres", Meas. Sci. Technol. 17, 985-991 (2006). CrossRef
  8. T.R. Woliński et al., "Photonic Liquid Crystal Fibers for Sensing Applications", IEEE Trans. Inst. Meas. 57, 8, 1796-1802 (2008). CrossRef
  9. T.R. Woliński, et al., "Multi-Parameter Sensing Based on Photonic Liquid Crystal Fibers", Mol. Cryst. Liq. Cryst. 502: 220-234., (2009). CrossRef
  10. T.R. Woliński, Xiao G and Bock WJ Photonics sensing: principle and applications for safety and security monitoring, (New Jersey, Wiley, 147-181, 2012). CrossRef
  11. T.R. Woliński et al., "Propagation effects in a polymer-based photonic liquid crystal fiber", Appl. Phys. A 115, 2, 569-574 (2014). CrossRef
  12. S. Ertman et al., "Optofluidic Photonic Crystal Fiber-Based Sensors", J. Lightwave Technol., 35, 16, 3399-3405 (2017). CrossRef
  13. S. Ertman et al., "Recent Progress in Liquid-Crystal Optical Fibers and Their Applications in Photonics", J. Lightwave Technol., 37, 11, 2516-2526 (2019). CrossRef
  14. M.M. Tefelska et al., "Electric Field Sensing With Photonic Liquid Crystal Fibers Based on Micro-Electrodes Systems", J. Lightwave Technol., 33, 2, 2405-2411, (2015). CrossRef
  15. S. Ertman et al., "Index Guiding Photonic Liquid Crystal Fibers for Practical Applications", J. Lightwave Technol., 30, 8, 1208-1214 (2012). CrossRef
  16. K. Mileńko, S. Ertman, T. R. Woliński, "Numerical analysis of birefringence tuning in high index microstructured fiber selectively filled with liquid crystal", Proc. SPIE - The International Society for Optical Engineering, 8794 (2013). CrossRef
  17. O. Jaworska and S. Ertman, "Photonic bandgaps in selectively filled photonic crystal fibers", Phot. Lett. Pol., 9, 3, 79-81 (2017). CrossRef
  18. I.C. Khoo, S.T.Wu, "Optics and Nonlinear Optics of Liquid Crystals", World Scientific (1993). CrossRef
  19. P. Lesiak et al., "Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles", Proc. SPIE 10228, 102280N (2017). CrossRef
  20. K. Rutkowska, T. Woliński, "Modeling of light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 2, 3, 107 (2010). CrossRef
  21. K. Rutkowska, L-W. Wei, "Assessment on the applicability of finite difference methods to model light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 4, 4, 161 (2012). CrossRef
  22. K. Rutkowska, U. Laudyn, P. Jung, "Nonlinear discrete light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 5, 1, 17 (2013). CrossRef
  23. M. Murek, K. Rutkowska, "Two laser beams interaction in photonic crystal fibers infiltrated with highly nonlinear materials", Photon. Lett. Poland 6, 2, 74 (2014). CrossRef
  24. M.M. Tefelska et al., "Photonic Band Gap Fibers with Novel Chiral Nematic and Low-Birefringence Nematic Liquid Crystals", Mol. Cryst. Liq. Cryst., 558, 184-193, (2012). CrossRef
  25. M.M. Tefelska et al., "Propagation Effects in Photonic Liquid Crystal Fibers with a Complex Structure", Acta Phys. Pol. A, 118, 1259-1261 (2010). CrossRef
  26. K. Orzechowski et al., "Polarization properties of cubic blue phases of a cholesteric liquid crystal", Opt. Mater. 69, 259-264 (2017). CrossRef
  27. H. Yoshida et al., "Heavy meson spectroscopy under strong magnetic field", Phys. Rev. E 94, 042703 (2016). CrossRef
  28. J. Yan et al., "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals", Appl. Phys. Lett. 96, 071105 (2010). CrossRef
  29. C.-W. Chen et al., "Random lasing in blue phase liquid crystals", Opt. Express 20, 23978-23984 (2012). CrossRef
  30. C.-H. Lee et al., "Polarization-independent bistable light valve in blue phase liquid crystal filled photonic crystal fiber", Appl. Opt. 52, 4849-4853 (2013). CrossRef
  31. D. Poudereux et al., "Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase", Proc. SPIE 9290 (2014). CrossRef
  32. K. Orzechowski et al., "Optical properties of cubic blue phase liquid crystal in photonic microstructures", Opt. Express 27, 10, 14270-14282 (2019). CrossRef
  33. M. Wahle, J. Ebel, D. Wilkes, H.S. Kitzerow, "Asymmetric band gap shift in electrically addressed blue phase photonic crystal fibers", Opt. Express 24, 20, 22718-22729 (2016). CrossRef
  34. K. Orzechowski et al., "Investigation of the Kerr effect in a blue phase liquid crystal using a wedge-cell technique", Phot. Lett. Pol. 9, 2, 54-56 (2017). CrossRef
  35. M.M. Sala-Tefelska et al., "Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains", Opt. Mater. 75, 211-215 (2018). CrossRef
  36. M.M. Sala-Tefelska et al., "The influence of orienting layers on blue phase liquid crystals in rectangular geometries", Phot. Lett. Pol. 10, 4, 100-102 (2018). CrossRef
  37. P. G. de Gennes JP. The Physics of Liquid Crystals. (Oxford University Press 1995). CrossRef
  38. L.M. Blinov and V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (New York, NY: Springer New York 1994). CrossRef
  39. D. Budaszewski, A.J. Srivastava, V.G. Chigrinov, T.R. Woliński, "Electro-optical properties of photo-aligned photonic ferroelectric liquid crystal fibres", Liq. Cryst., 46 2, 272-280 (2019). CrossRef
  40. V. G. Chigrinov, V. M. Kozenkov, H-S. Kwok. Photoalignment of Liquid Crystalline Materials (Chichester, UK: John Wiley & Sons, Ltd 2008). CrossRef
  41. M. Schadt et al., "Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers", Jpn. J. Appl. Phys.31, 2155-2164 (1992). CrossRef
  42. D. Budaszewski et al., "Photo-aligned ferroelectric liquid crystals in microchannels", Opt. Lett. 39, 4679 (2014). CrossRef
  43. D. Budaszewski, et al., "Photo‐aligned photonic ferroelectric liquid crystal fibers", J. Soc. Inf. Disp. 23, 196-201 (2015). CrossRef
  44. O. Stamatoiu, J. Mirzaei, X. Feng, T. Hegmann, "Nanoparticles in Liquid Crystals and Liquid Crystalline Nanoparticles", Top Curr Chem 318, 331-392 (2012). CrossRef
  45. A. Siarkowska et al., "Titanium nanoparticles doping of 5CB infiltrated microstructured optical fibers", Photonics Lett. Pol. 8 1, 29-31 (2016). CrossRef
  46. A. Siarkowska et al., "Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles", Beilstein J. Nanotechnol. 8, 2790-2801 (2017). CrossRef
  47. D. Budaszewski et al., "Nanoparticles-enhanced photonic liquid crystal fibers", J. Mol. Liq. 267, 271-278 (2018). CrossRef
  48. D. Budaszewski et al., "Enhanced efficiency of electric field tunability in photonic liquid crystal fibers doped with gold nanoparticles", Opt. Exp. 27, 10, 14260-14269 (2019). CrossRef

Downloads

Published

2019-07-01

How to Cite

[1]
T. Woliński, “Photonic Liquid Crystal Fibers – 15 years of research activities at Warsaw University of Technology”, Photonics Lett. Pol., vol. 11, no. 2, pp. 22–24, Jul. 2019.

Issue

Section

Articles