Analysis of amplified spontaneous emission in ring-core Tm3+-doped optical fiber
DOI:
https://doi.org/10.4302/plp.v15i4.1252Abstract
This paper presents the results of numerical simulations of a ring-core thulium-doped silica fiber (RC-TDF). Enhanced spontaneous emission (ASE) was generated for a fiber with 4wt.% thulium content. An analysis of the formation of the ASE spectrum parameters (λmax, FWHM, output power) as a function of fiber length is also shown. The modal map is presented as a combination of outer and inner core radii and ∆n.
Full Text: PDF
References
- Y. Huang, Q. Xu, S. Peng, C. Xu, T. Liao, "2 μm Laser generation and amplification based on dual Tm3+-doped high-Q silica microsphere using an ASE light source for pumping", Opt Laser Technol , 153, 108282 (2022). CrossRef
- D. Theisen-Kunde, V. Ott, R. Brinkmann, R. Keller, "Potential of a new cw 2 μm laser scalpel for laparoscopic surgery", Med Laser Appl. 22, 139 (2007). CrossRef
- N.P. Barnes, B.M. Walsh, D.J. Reichle, R.J. DeYoung, "Tm:fiber lasers for remote sensing", Opt Mater (Amst), 31, 1061 (2009). CrossRef
- S.W. Henderson, C.P. Hale, J.R. Magee, M.J. Kavaya, A.V. Huffaker, "Eye-safe coherent laser radar system at 2.1 μm using Tm,Ho:YAG lasers", Opt Lett, 16, 773 (1991). CrossRef
- S.D. Jackson, "Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers", Opt Commun. 230, 197 (2004). CrossRef
- J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, N.P. Barnes, "Efficient thulium-doped 2-μm germanate fiber laser", IEEE Phot Technol Lett. 18, 334 (2006). CrossRef
- M.J. Barber, P.C. Shardlow, P. Barua, J.K. Sahu, W.A. Clarkson, "Nested-ring doping for highly efficient 1907nm short-wavelength cladding-pumped thulium fiber lasers", Opt Lett. 45, 5542 (2020). CrossRef
- P. Miluski, K. Markowski, M. Kochanowicz, M. Łodziński, J. Żmojda, W.A. Pisarski, J. Pisarska, M. Kuwik, M. Leśniak, D. Dorosz, T. Ragiń, V. Askirka, J. Dorosz, "Tm3+/Ho3+ profiled co-doped core area optical fiber for emission in the range of 1.6–2.1 µm", Sci Rep. 13, 13963 (2023). CrossRef
- H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, H. Nasu, M. Yamada, "2-LP mode few-mode fiber amplifier employing ring-core erbium-doped fiber", Opt Express, 23, 27405 (2015) CrossRef
- M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, "Design of Three-Spatial-Mode Ring-Core Fiber", J. Lightwave Technol. 32, 1337 (2014). CrossRef
- P. Sillard, M. Bigot-Astruc, D. Boivin, H. Maerten, L. Provost, "Few-Mode Fiber for Uncoupled Mode-Division Multiplexing Transmissions", in 37th European Conference and Exposition on Optical Communications, (2011). CrossRef
- S. D. Jackson, S. Mossman, "Laser-induced changes on the complex refractive indices of phase-change thin film", Appl Opt. 42, 2702 (2003). CrossRef
- S. Unger, A. Schwuchow, J. Dellith, J. Kirchhof, "Optical properties of ytterbium/aluminium doped silica glasses", Opt Mater Express, 10, 907 (2020). CrossRef
- P. Honzatko, Y. Baravets, I. Kasik, O. Podrazky, "Wideband thulium–holmium-doped fiber source with combined forward and backward amplified spontaneous emission at 1600–2300 nm spectral band", Opt Lett. 39, 3650 (2014). CrossRef
- P. Miluski, M. Kochanowicz, J. M. Zmojda, A. Baranowska, M. Leśniak, D. Dorosz, K. Markowski, J. Dorosz, "Large mode area fibers for single-mode transmission near 2μm", Proc. SPIE 12142, (2022). CrossRef
- Y. Jung, Q. Kang, H. Zhou, R. Zhang, S. Chen, H. Wang, Y. Yang, X. Jin, F. P. Payne, S. Alam, D. J. Richardson, "Low-Loss 25.3 km Few-Mode Ring-Core Fiber for Mode-Division Multiplexed Transmission", J. Lightwave Technol. 35, 1363 (2017). CrossRef
Downloads
Published
2023-12-31
How to Cite
[1]
K. Markowski and P. Miluski, “Analysis of amplified spontaneous emission in ring-core Tm3+-doped optical fiber”, Photonics Lett. Pol., vol. 15, no. 4, pp. 78–80, Dec. 2023.
Issue
Section
Articles