Machine Learning Enhanced Optical Fiber Sensor For Detection Of Glucose Low Concentration In Samples Mimicking Tissue

Authors

  • Maria Babińska Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland
  • Adam Władziński Gdańsk University of Technology
  • Tomasz Talaśka Department of Decision Systems and Robotics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland
  • Małgorzata Szczerska Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland

DOI:

https://doi.org/10.4302/plp.v17i1.1320

Abstract

This study presents an optical fiber sensor for detecting low glucose concentrations in a sample mimicking urine. Our research focused on designing a sensor capable of detecting 0.5% glucose concentrations in artificial urine. Algorithms were applied to analyze and accurately classify the data and identify the principal components of the collected data. The Random Forest and XGBoost model achieved the highest accuracy, confirming that frequency domain analysis combined with machine learning can significantly enhance glucose detection accuracy. These findings demonstrate that integrating machine learning with an optical fiber sensor enables the detection of low glucose concentrations.

Full Text: PDF

References

  1. S. Garcia-Galan, J.A. Cabrera-Rodriguez, F.J. Maldonado-Carrascosa, N. Ruiz-Reyes, M. Szczerska, P. Vera-Candeas, F.D. Gonzalez-Martinez, F.J. Canadas-Quesada, A.J. Cruz-Lendinez, "Expert system against machine learning approaches as a virtual sensor for ventricular arrhythmia risk level estimation", Biomedical Signal Processing and Control 102, 107255 (2025). CrossRef
  2. D.D. Nolte, Optical Interferometry for Biology and Medicine (Springer 2012). CrossRef
  3. X. Wang, O.S. Wolfbeis, "Fiber-Optic Chemical Sensors and Biosensors (2015–2019)", Anal Chem. 92(1), 397 (2020). CrossRef
  4. A. Sękowska, D. Majchrowicz, A. Sabisz, M. Ficek, B. Bułło-Piontecka, M. Kosowska, L. Jing, R. Bogdanowicz, M. Szczerska, "Nanodiamond phantoms mimicking human liver: perspective to calibration of T1 relaxation time in magnetic resonance imaging", Scient. Rep. 10(1), 6446 (2020). CrossRef
  5. S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. N. Conti, S. Pelli, G.C. Righini, "Optical Microspherical Resonators for Biomedical Sensing", Sensors 11(1), 785 (2011). CrossRef
  6. H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, H. Rigneault, "Optical-fiber-microsphere for remote fluorescence correlation spectroscopy", Opt. Expr. 17(21), 19085 (2009). CrossRef
  7. P. Listewnik, M. Bechelany, M. Szczerska, "Microsphere structure application for supercapacitor in situ temperature monitoring", Smart Mat. Struct. 30(10), 10LT01 (2021). CrossRef
  8. S.L. Cowart, M.E. Stachura, "Winter Sports Medicine", Jama 264(21), 2808 (1990). CrossRef
  9. N. Sarigul, F. Korkmaz, İ. Kurultak, "A New Artificial Urine Protocol to Better Imitate Human Urine", Scient. Rep. 9, 20159 (2019). CrossRef
  10. X. Li, Y. Shao, Y. Yu, Y. Zhang, S. Wei, "A Highly Sensitive Fiber-Optic Fabry–Perot Interferometer Based on Internal Reflection Mirrors for Refractive Index Measurement", Sensors 16(6), 794 (2016). CrossRef
  11. E. Ujah, M. Lai, G. Slaughter, "Ultrasensitive tapered optical fiber refractive index glucose sensor", Scient. Rep. 13, 4495 (2023). CrossRef
  12. M. Grochowski, M. Wąsowicz, A. Mikołajczyk, M. Ficek, M. Kulka, M.S. Wróbel, M. Jędrzejewska-Szczerska, "Machine learning system for automated blood smear analysis", Metrology Measur. Syst. 26(1), 81 (2019). CrossRef
  13. I. Feder, M. Wróbel, H. Duadi, M. Jędrzejewska-Szczerska, D. Fixler, "Experimental results of full scattering profile from finger tissue-like phantom", Biomedical Opt. Expr. 7(11), 4695 (2016). CrossRef
  14. P. Kluczynski, J. Gustafsson, A.M. Lindberg, O. Axner, "Wavelength modulation absorption spectrometry — an extensive scrutiny of the generation of signals", Science Direct 56(8), 1277 (2001). CrossRef
  15. M. Hirsch, D. Majchrowicz, P. Wierzba, M. Weber, M. Bechelany, M. Jędrzejewska-Szczerska, "Low-Coherence Interferometric Fiber-Optic Sensors with Potential Applications as Biosensors", Sensors 17(2), 261 (2017). CrossRef
  16. S. Shi, L. Ye, H. Xiao, T. Luo, "A Comparative Study of Mainstream Machine Learning Algorithms for Spine Health Prediction", 16th ICME International Conference on Complex Medical Engineering (CME), pp. 349-355 (2022). CrossRef

Downloads

Published

2025-03-31

How to Cite

[1]
M. Babińska, A. Władziński, T. Talaśka, and M. Szczerska, “Machine Learning Enhanced Optical Fiber Sensor For Detection Of Glucose Low Concentration In Samples Mimicking Tissue”, Photonics Lett. Pol., vol. 17, no. 1, pp. 20–22, Mar. 2025.

Issue

Section

Articles