Monte Carlo studies of the band-bending in GaAs/Al0.45Ga0.55As quantum-cascade laser

Authors

  • Jan Konupek Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warszawa
  • Piotr Borowik Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warszawa
  • Jean-Luc Thobel Institut d'Électronique, de Microélectronique et de Nanotechnologie, UMR CNRS 8520, Université Lille 1, Avenue Poincaré, BP 69, 59652 Villeneuve d'Ascq Cedex, France
  • Leszek Adamowicz Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warszawa

DOI:

https://doi.org/10.4302/photon.%20lett.%20pl.v3i2.205

Abstract

Results of Monte Carlo simulation of mid-infrared QCL structure initially proposed by Page et al. [Appl. Phys. Lett. 78, 3529 (2001)] are presented. The band-bending effect imposed by non-equilibrium electric charge distribution during the laser operation is observed. Perturbations of electric potential, non-equilibrium charge and electron sub-bands populations are demonstrated for a realistic range of electron sheet densities levels.

Full Text: PDF

References:
  1. C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulations (Springer, Wien 1989)
  2. O. Bonno, J.L Thobel, F. Dessenne, "Modeling of electron–electron scattering in Monte Carlo simulation of quantum cascade lasers", J. Appl. Phys. 97, 043702 (2005).[CrossRef]
  3. P. Borowik, J.L. Thobel, L. Adamowicz, "Monte Carlo based microscopic description of electron transport in GaAs/Al0.45Ga0.55As quantum-cascade laser structure ", J. Appl. Phys. 108, 073106 (2010).[CrossRef]
  4. P. Borowik, J.L. Thobel, L. Adamowicz, Monte Carlo versus Rate Equation studies of population inversion in GaAs/ Al0.45Ga0.55As quantum-cascade laser. (unpublished)
  5. P. Borowik, J.L. Thobel, L. Adamowicz, Combined Rate Equation and Monte Carlo studies of electron populations in quantum-cascade laser. (unpublished).
  6. P. Harrison, "The nature of the electron distribution functions in quantum cascade lasers ", Appl. Phys. Lett. 75, 2800 (1999).[CrossRef]
  7. D. Indjin, P. Harrison, R.W. Kelsall, Z. Ikonić, "Self-consistent scattering theory of transport and output characteristics of quantum cascade lasers", J. Appl. Phys. 91, 9091 (2002).[CrossRef]
  8. K. Donovan, P. Harrison, R.W. Kelsall, "Self-consistent solutions to the intersubband rate equations in quantum cascade lasers: Analysis of a GaAs/AlxGa1−xAs device", J. Appl. Phys. 89, 3084 (2001).[CrossRef]
  9. P. Harrison, R.W. Kelsall, "The relative importance of electron–electron and electron–phonon scattering in terahertz quantum cascade lasers", Solid State Electron. 42, 1449 (1998).[CrossRef]
  10. J.T. Lü, J.C. Cao, "Coulomb scattering in the Monte Carlo simulation of terahertz quantum-cascade lasers", Appl. Phys. Lett. 89, 211115 (2006).[CrossRef]
  11. R. Nelander, A. Wacker, "Temperature dependence and screening models in quantum cascade structures", J. Appl. Phys. 106, 063115 (2009).[CrossRef]
  12. H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, C. Sirtori, "300 K operation of a GaAs-based quantum-cascade laser at λ≈9 μm ", Appl. Phys. Lett. 78, 3529 (2001).[CrossRef]
  13. K. Kosiel, M. Bugajski, A. Szerling, J. Kubacka-Traczyk, P. Karbownik, E. Pruszyńska-Karbownik, J. Muszalski, A. Łaszcz, P. Romanowski, M. Wasiak, W. Nakwaski, I. Makarowa, P. Perlin, Phot. Lett. Poland 1, 16 (2009).
  14. V.D. Jovanović, S. Höfling, D. Indjin, N. Vukmirović, Z. Ikonć, P. Harrison, J.P. Reithmaier, A. Forchel, "Influence of doping density on electron dynamics in GaAs/AlGaAs quantum cascade lasers", J. Appl. Phys. 99, 103106 (2006).[CrossRef]

Downloads

Published

2011-06-28

How to Cite

[1]
J. Konupek, P. Borowik, J.-L. Thobel, and L. Adamowicz, “Monte Carlo studies of the band-bending in GaAs/Al0.45Ga0.55As quantum-cascade laser”, Photonics Lett. Pol., vol. 3, no. 2, pp. pp. 49–51, Jun. 2011.

Issue

Section

Articles