Room temperature AlGaAs/GaAs quantum cascade lasers
DOI:
https://doi.org/10.4302/photon.%20lett.%20pl.v3i2.213Abstract
The room temperature (293K), pulsed mode operation of a GaAs-based quantum cascade laser (QCL) is reported. This has been achieved by the use of GaAs/Al0.45Ga0.55As heterostructure. Its design follows an "anticrossed-diagonal" scheme. The QCL structures were grown by MBE in a Riber Compact 21T reactor. The double trench lasers were fabricated using standard processing technology, i.e., wet etching and Si3N4 for electrical insulation. Double plasmon confinement with Al-free waveguide has been used to minimize absorption losses. High operating temperatures have been achieved by careful optimization of growth technology and using metallic high reflectivity facet coating on the back facet of the laser.Full Text: PDF
References:
- H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, C. Sirtori, "300 K operation of a GaAs-based quantum-cascade laser at λ≈9 μm", App. Phys. Lett. 78, 3529 (2001).[CrossRef]
- H. Page, A. Robertson, C. Sirtori, C. Becker, G. Glastre, J. Nagle, "Demonstration of (λ≈11.5-μm) GaAs-based quantum cascade laser operating on a Peltier cooled element", IEEE Phot. Lett. 13, 556 (2001).[CrossRef]
- H. Page, P. Collot, A de Rossi, V. Ortiz, C. Sirtori, "High reflectivity metallic mirror coatings for mid-infrared (λ approx 9 μm) unipolar semiconductor lasers", Semicond. Sci. Technol. 17, 1312 (2002).[CrossRef]
- K. Pierściński, D. Pierścińska, K. Kosiel, A. Szerling, M. Bugajski, "Influence of Operating Conditions on Quantum Cascade Laser Temperature", J. Electronic Mat. 39, 630 (2010)[CrossRef]
- K. Kosiel, J. Kubacka-Traczyk, P. Karbownik, A. Szerling, J. Muszalski, M. Bugajski, P. Romanowski, J.Gaca, M. Wójcik, "Molecular-beam epitaxy growth and characterization of mid-infrared quantum cascade laser structures", Microelectronics Jour. 40, 565 (2009).[CrossRef]
- K. Kosiel, M. Bugajski, A. Szerling, J. Kubacka-Traczyk, P. Karbownik, E. Pruszyńska-Karbownik, J. Muszalski, A. Łaszcz, P. Romanowski, M. Wasiak, W. Nakwaski, I. Makarowa, P. Perlin, Phot. Lett. Poland 1, 16 (2009).
- K. Kosiel, M. Bugajski, A. Szerling, P. Karbownik, J. Kubacka-Traczyk, I. Sankowska, E. Pruszyńska-Karbownik, A. Trajnerowicz, A. Wójcik-Jedlińska, M. Wasiak, D. Pierścińska, K. Pierściński, S. Adhi, T. Ochalski, G. Huyet, Terahertz and Mid Infrared Radiation (NATO Science for Peace and Security Series B: Physics and Biophysics, Chapter 13, Springer 2011).
- A. Wójcik-Jedlińska, M. Wasiak, A. Szerling, P. Karbownik, K. Kosiel, M. Bugajski, 10th Int. Conf. Mid-infrared Optoelectr. MIOMD, Shanghai, Sept. 5-9, 2010, p.152 (2010).
- A. Szerling, P. Karbownik, A. Barańska, K. Kosiel, A. Wójcik-Jedlińska, M. Wasiak, M. Bugajski, 10th Int. Conf. Mid-infrared Optoelectr., MIOMD, Shanghai, Sept. 5-9, 2010, p.156 (2010).
- S. Hofling, R. Kallweit, J. Seufert, J. Koeth, J. P. Reithmaier, A. Forchel, "Reduction of the threshold current density of GaAs/AlGaAs quantum cascade lasers by optimized injector doping and growth conditions", J. Crystal Growth 278, 775 (2005).[CrossRef]
- A. Gordon, C.Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, F. Capasso, "Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning", Phys. Rev. A 77, 053804 (2008).[CrossRef]
- H. Risken, K. Nummedal, "Self-Pulsing in Lasers ", J. Appl. Phys. 39, 4662 (1968).[CrossRef]
- P. Graham, H. Haken, "Quantum theory of light propagation in a fluctuating laser-active medium", Z. Phys. 213, 420 (1968)[CrossRef]
Downloads
Published
2011-06-29
How to Cite
[1]
M. Bugajski, “Room temperature AlGaAs/GaAs quantum cascade lasers”, Photonics Lett. Pol., vol. 3, no. 2, pp. pp. 55–57, Jun. 2011.
Issue
Section
Articles