Performance of a nitrogen implanted large aperture THz emitter
DOI:
https://doi.org/10.4302/photon.%20lett.%20pl.v4i1.276Abstract
Improved bandwidth of a large aperture nitrogen implanted GaAs photoconductive THz emitter is presented in this paper. An effect of nitrogen ion implantation on semi-insulating GaAs has been studied in a sample implanted at two doses: 3×1014 and 6×1014 ions/cm2. The carrier life time of the investigated material was measured by means of the femtosecond time-resolved-reflectance technique. The implantation process reduced the carrier lifetime of GaAs by 65%.The bandwidth of the THz emitter was tested in a Time Domain Spectroscopy arrangement. Usable bandwidth of the TDS set-up based on the implanted emitter increased from 1 to 1.5THz.Full Text: PDF
References:
- M.R. Melloch et al., "Low-Temperature Grown III-V Materials", Annu. Rev. Mater. Sci. 25, 547 (1995).CrossRef
- C. Wang, M. Pocha, J. Morse, M. Singh, B. Davis, "Neutron-treated, ultrafast, photoconductor detectors", Appl. Phys. Lett. 54, 1451 (1989).CrossRef
- H.H. Tan et al., "Ion-implanted GaAs for subpicosecond optoelectronic applications", IEEE J. Sel. Top. Quantum Electron. 2, 636 (1996).CrossRef
- P. Kordos, M. Marso, and M. Miculics, "http://dx.doi.org/10.1007/s00339-007-3909-9", Appl. Phys. A, 87 563 (2007).CrossRef
- W. Shan, K.M. Yu, W. Walukiewicz, J.W. Ager III, E.E. Haller, and M.C. Ridgeway, "Reduction of band-gap energy in GaNAs and AlGaNAs synthesized by N+ implantation ", Appl. Phys. Lett. 75, 1410 (1999).CrossRef
- A. Patan?, G. Allison, L. Eaves, M. Hopkinson, G. Hill, and A. Ignatov, "Tailoring the electrical conductivity of GaAs by nitrogen incorporation", J. Phys. Condens. Matter 21, 174209 (2009).CrossRef
- M. Mikulics, M. Marso, P. Kordo, S. Stanek, P. Ková, X. Zheng, S. Wu, and R. Sobolewski, "Ultrafast and highly sensitive photodetectors fabricated on high-energy nitrogen-implanted GaAs", Appl. Phys. Lett. 83, 1719 (2003).CrossRef
- A.S. Weiling, B.B. Hu, N. M. Froberg, and D.H. Auston,, "Generation of tunable narrow?band THz radiation from large aperture photoconducting antennas", Appl. Phys. Lett. 64, 137 (1994).CrossRef
- S.G. Park, A.M. Weiner, M.R. Melloch, C.W. Siders, J.L.W. Seiders, and A.J. Taylor, "High-power narrow-band terahertz generation using large-aperture photoconductors", IEEE J. Quantum Electron. 35, 1257 (1999).CrossRef
- F. Ziegler, J.P. Biersack and U. Littmark, The Stopping and Range of Ions in Solids (New York, Pergamon 1985).
- C.V. Shank et al., "Picosecond time resolved reflectivity of direct gap semiconductors", Solid State Commun. 26, 567 (1978). CrossRef
Downloads
Published
2012-03-29
How to Cite
[1]
K. T. Świtkowski, C. Jastrzębski, N. Pałka, J. Dyczewski, and A. Barcz, “Performance of a nitrogen implanted large aperture THz emitter”, Photonics Lett. Pol., vol. 4, no. 1, pp. pp. 32–34, Mar. 2012.
Issue
Section
Articles