Bow-tie diodes for terahertz imaging: Comparative study
DOI:
https://doi.org/10.4302/photon.%20lett.%20pl.v4i3.332Abstract
Concept of broadband bow-tie diodes as terahertz sensors and their possible application for imaging is presented. Different bow-tie sensors fabricated of planar GaAs, modulation doped GaAs/AlGaAs structures and InGaAs layers are compared and discussed. It is demonstrated experimentally that the sensitivity of all studies devices at room temperature is nearly independent of frequency below 1THz and amounts to 0.3V/W for GaAs-based structures and 10V/W for InGaAs sensors. Room temperature terahertz images are recorded at 0.71THz and 1.4THz. Their parameters are considered in comparison of images taken using commercially available pyro-electric sensors.Full Text: PDF
References
- A. Maestrini et al., "Design and Characterization of a Room Temperature All-Solid-State Electronic Source Tunable From 2.48 to 2.75 THz", IEEE Trans. Terahertz Sci. Technol. 2, 177 (2012).CrossRef
- P.H. Siegel, "Terahertz technology", IEEE Trans. Microwave Theory Tech. 50, 910 (2002). CrossRef
- W. Knap et al., "Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor", Appl. Phys. Lett. 80, 3433 (2002). CrossRef
- A. Lisauskas et al., "Terahertz imaging with GaAs field-effect transistors", Electron. Lett. 44, 408 (2008). CrossRef
- A.W.M. Lee et al., "Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array", IEEE Photon. Technol. Lett. 18, 1415 (2006). CrossRef
- Duy-Thong Nguyen et al., "Broadband THz Uncooled Antenna-Coupled Microbolometer Array—Electromagnetic Design, Simulations and Measurements", IEEE Trans. Terahertz Sci. Technol. 2, 299 (2012). CrossRef
- I. Kašalynas et al., "InGaAs-based bow-tie diode for spectroscopic terahertz imaging", J. Appl. Phys. 110, 114505 (2011). CrossRef
- L. Minkevičius et al., "Terahertz heterodyne imaging with InGaAs-based bow-tie diodes", Appl. Phys. Lett. 99, 131101 (2011). CrossRef
- D. Seliuta et al., "Detection of terahertz?sub-terahertz radiation by asymmetrically-shaped 2DEG layers", Electron. Lett. 40, 631 (2004). CrossRef
- D. Seliuta et al., "Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature", Electron. Lett. 42, 825 (2006). CrossRef
- A. Sužied?lis et al., "Giga- and terahertz frequency band detector based on an asymmetrically necked n-n+-GaAs planar structure", J. Appl. Phys. 93, 3034 (2003). CrossRef
- L. Minkevičius et al., "Frequency-Dependent Properties of InGaAs Bow-Tie Detectors in Terahertz Rnge", Lith. J. Phys. 50, 173 (2010). CrossRef
- I. Kašalynas et al., "Terahertz imaging with bow-tie InGaAs-based diode with broken symmetry", Electron Lett. 45, 833 (2009). CrossRef
- L. Minkevičius et al., Proc. 19th Intern. Conf. Microwaves, Radar, and Wireless Comm. MIKON 2012, IEEE 2012, p.105.
- F. Schuster et al, "Broadband terahertz imaging with highly sensitive silicon CMOS detectors", Opt. Express 19, 7827 (2011). CrossRef
- S. Boppel at al., "Performance and performance variations of sub-1?THz detectors fabricated with 0.15?[micro sign]m CMOS foundry process", Electron. Lett. 47, 661 (2011).CrossRef
- S. Nadar et al., "Room temperature imaging at 1.63 and 2.54 THz with field effect transistor detectors", J. Appl. Phys. 108, 054508 (2010). CrossRef
- Duy-Thong Nguyen et al., Proc. 19th Intern. Conf. Microwaves, Radar, and Wireless Comm. MIKON 2012, IEEE 2012, p.116.
Downloads
Additional Files
Published
2012-09-28
How to Cite
[1]
G. Valusis, R. Venckevicius, and I. Kasalynas, “Bow-tie diodes for terahertz imaging: Comparative study”, Photonics Lett. Pol., vol. 4, no. 3, pp. pp. 103–105, Sep. 2012.
Issue
Section
Articles