Intra-cavity patterning - new method of single mode emission enhancement

Authors

  • Tomasz Czyszanowski Lodz University of Technology
  • Nicolas Volet
  • Jarosław Walczak
  • Maciej Dems
  • Robert Sarzała

DOI:

https://doi.org/10.4302/photon.%20lett.%20pl.v6i1.437

Abstract

We demonstrate the results of numerical simulations of 1.3μm InAlGaAs/InP VCSEL with ring pattern etched at the interface between the cavity and top DBR. We show that proposed design offers selective confinement of the fundamental mode and strong discrimination of higher order modes. Consequently VCSEL with ring confinement is capable to operate in broad range of injected currents in the single mode regime which facilitates improvement of the maximal emitted power and increase of the wavelength tuning range with very narrow spectral characteristics.

Full Text: PDF

References
  1. C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller, K.J. Ebeling, "4.8 mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes", Electron. Lett. 33, 1790 (1997). CrossRef
  2. A.-S. Gadallah, R. Michalzik, "High-Output-Power Single-Higher-Order Transverse Mode VCSEL With Shallow Surface Relief", IEEE Photon. Technol. Lett. 23, 1040 (2011). CrossRef
  3. D. Zhou, L.J. Mawst, "High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers", IEEE J. Quantum Elect. 38, 1599 (2002). CrossRef
  4. E. Kapon, A. Sirbu, "Long-wavelength VCSELs: Power-efficient answer", Nat. Phot. 3, 27 (2009). CrossRef
  5. A.J. Danner, J.J. Raftery, T. Kim, P.O. Leisher, A.V. Giannopoulos, K.D. Choquette, "Progress in Photonic Crystal Vertical Cavity Lasers", IEICE Trans. Electron. E88–C, 944 (2005). DirectLink
  6. N. Volet, T. Czyszanowski, J. Walczak, L. Mutter, B. Dwir, Z. Micković, P. Gallo, V. Iakovlev, A. Sirbu, A. Caliman, A. Mereuta, E. Kapon, "Improved single-mode emission characteristics of long-wavelength wafer-fused vertical-cavity surface-emitting lasers by intra-cavity patterning", Proc. SPIE 8639, 86390S (2013). CrossRef
  7. A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, E. Kapon, "Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band", Semicond. Sci. Technol. 26, 014016 (2011). CrossRef
  8. M. Dems, R. Kotynski, K. Panajotov, "PlaneWave Admittance Method — a novel approach for determining the electromagnetic modes in photonic structures", Opt. Exp. 13, 3196 (2005). CrossRef
  9. R.P. Sarzala, W. Nakwaski, "Optimization of 1.3 µm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation", J. Phys., Condens. Matter 16, S3121 (2004). CrossRef
  10. D. Xu, C. Tong, S.F. Yoon, W. Fan, D.H. Zhang, M. Wasiak, Ł. Piskorski, K. Gutowski, R.P. Sarzała, W. Nakwaski, "Room-temperature continuous-wave operation of the In(Ga)As/GaAs quantum-dot VCSELs for the 1.3 µm optical-fibre communication", Semicond. Sci. Technol. 24, 055003 (2009). CrossRef
  11. T. Czyszanowski, M. Dems, R.P. Sarzała, K. Panajotov, K.D. Choquette, "Photonic Crystal VCSELs: Detailed Comparison of Experimental and Theoretical Spectral Characteristics", IEEE J. Select. Top. Quant. Electron. 19, 1701908 (2013). CrossRef
  12. W. Nakwaski, "Thermal conductivity of binary, ternary, and quaternary III-V compounds", J. Appl. Phys. 64, 159 (1989). CrossRef
  13. J. Piprek, J. K.White, A.J. SpringThorpe, "What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?", IEEE J. Quantum Electron. 38, 1253 (2002). CrossRef
  14. S. Adachi, "GaAs, AlAs, and Al x Ga1−x As: Material parameters for use in research and device applications", J. Appl. Phys. 58, R1 (1985). CrossRef
  15. S. Gehrsitz, F.K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, H. Sigga, "The refractive index of AlxGa1−xAs below the band gap: Accurate determination and empirical modeling", J. Appl. Phys. 87, 7825 (2000). CrossRef
  16. S. Adachi, "Physical Properties of III-V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP", Physical Properties of III-V Semiconductor Compounds (New York, NY, USA, Wiley 1992). CrossRef
  17. R.J. Sladek, "Thermal Conductivity of Indium-Thallium Alloys at Low Temperatures", Phys. Rev. 97, 902 (1955). CrossRef
  18. N.V. Zavaritskii, A.G. Zeldovich, "Thermal Conductivity Of Technical Materials At Low Temperatures", Zh. Tekh. Fiz. 26, 2032 (1956).
  19. L. Mutter, V. Iakovlev, A. Caliman, A. Mereuta, A. Sirbu, E. Kapon, "1.3 μm-wavelength phase-locked VCSEL arrays incorporating patterned tunnel junction", Opt. Exp. 17, 8558 (2009). CrossRef
  20. L. Mutter, B. Dwir, A. Caliman, V. Iakovlev, A. Mereuta, A. Sirbu, E. Kapon, "Intra-cavity patterning for mode control in 1.3μm coupled VCSEL arrays", Opt. Exp. 19, 4827 (2011). CrossRef
  21. E. Kapon, A. Sirbu, "Long-wavelength VCSELs: Power-efficient answer", Nat. Phot. 3, 27 (2009). CrossRef
  22. T. Czyszanowski, M. Dems, R.P. Sarzała, W. Nakwaski, K. Panajotov, "Precise Lateral Mode Control in Photonic Crystal Vertical-Cavity Surface-Emitting Lasers", IEEE J. Quantum Electron 47, 1291 (2011). CrossRef

Downloads

Published

2014-03-31

How to Cite

[1]
T. Czyszanowski, N. Volet, J. Walczak, M. Dems, and R. Sarzała, “Intra-cavity patterning - new method of single mode emission enhancement”, Photonics Lett. Pol., vol. 6, no. 1, pp. pp. 26–28, Mar. 2014.

Issue

Section

Articles