Time efficient method for defocus error compensation in tomographic phase microscopy
DOI:
https://doi.org/10.4302/photon.%20lett.%20pl.v6i3.505Abstract
We present a holographic method for defocus error compensation in tomographic phase microscopy, which enables high quality reconstruction in the presence of a meaningful run-out error of the measurement system. The proposed method involves indirect determination of the sample displacement from the in-focus plane. The sought quantity is deduced from the transverse movement of the rotating sample, which can be determined with high precision using correlation-based techniques. The proposed solution features improved accuracy and reduced computation time compared to the conventional autofocusing-based approach. The validity of the concept is experimentally demonstrated by tomographic reconstruction of an optical microtip.Full Text: PDF
References
- S. Kou, C. Sheppard, "Image formation in holographic tomography", Opt. Lett. 33, 2362 (2008). CrossRef
- A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (New York, SIAM 2001). CrossRef
- T. C. Wedberg, J. J. Stamnes, and W. Singer, "Comparison of the filtered backpropagation and the filtered backprojection algorithms for quantitative tomography", Appl. Opt. 34, 6575 (1995). CrossRef
- J. Kostencka and T. Kozacki, "Optical diffraction tomography: accuracy of an off-axis reconstruction", Proc. SPIE 9132, 91320M (2014) CrossRef
- A. Kuś et al., "Tomographic phase microscopy of living three-dimensional cell cultures", J. Biomed. Opt. 19, 46009 (2014) CrossRef
- J. Kostencka, T. Kozacki, M. Dudek, and M. Kujawińska, "Noise suppressed optical diffraction tomography with autofocus correction", Opt. Express 22, 5731 (2014) CrossRef
- W. Górski, "Tomographic imaging of photonic crystal fibers", Opt. Eng. 45, 125002 (2006) CrossRef
- F. Charrière et. al., "Cell refractive index tomography by digital holographic microscopy", Opt. Lett. 31, 178 (2006) CrossRef
- Y. Jeon and C. K. Hong, "Rotation error correction by numerical focus adjustment in tomographic phase microscopy", Opt. Eng. 48, 105801 (2009) CrossRef
- P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, "Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging", Appl. Opt. 47, D176 (2008) CrossRef
- J. Kostencka, T. Kozacki, and K. Liżewski, "Autofocusing method for tilted image plane detection in digital holographic microscopy", Opt. Commun. 297, 20 (2013) CrossRef
- K. Liżewski, S. Tomczewski, T. Kozacki, and J. Kostencka, "High-precision topography measurement through accurate in-focus plane detection with hybrid digital holographic microscope and white light interferometer module", Appl. Optics 53, 2446 (2014) CrossRef
- T. Kozacki, M. Józwik, and R. Józwicki, "Determination of optical field generated by a microlens using digital holographic method", Opto-Electron. Rev. 17, 58 (2009) CrossRef
- I. Yamaguchi and T. Zhang, "Phase-shifting digital holography", Opt. Lett. 22, 1268 (1997) CrossRef
- M. Kujawińska et al., "Interferometric and tomographic investigations of polymer microtips fabricated at the extremity of optical fibers", Proc. SPIE 8494, 849404 (2012) CrossRef
- T. Kozacki, K. Falaggis, and M. Kujawińska, "Computation of diffracted fields for the case of high numerical aperture using the angular spectrum method", Appl. Opt. 51, 7080 (2012) CrossRef
Downloads
Published
2014-09-30
How to Cite
[1]
J. Kostencka, T. Kozacki, M. Dudek, and M. Kujawińska, “Time efficient method for defocus error compensation in tomographic phase microscopy”, Photonics Lett. Pol., vol. 6, no. 3, pp. pp. 102–104, Sep. 2014.
Issue
Section
Articles