Broadband CO2 measurements with VIPA spectrometer in the near-infrared
DOI:
https://doi.org/10.4302/photon.%20lett.%20pl.v7i3.599Abstract
We demonstrate near-infrared cavity-enhanced optical frequency comb spectroscopy of R branch of CO2 overtone transitions around 1.57µm. The measurement setup is based on an Er:fiber optical frequency comb, high finesse cavity and a VIPA spectrometer. Dither locking scheme provides robust operation and high absorption sensitivity enhancement, while VIPA etalon-based spectrometer provides rapid broadband acquisition with 600 MHz spectral resolution. The sensitivity of the system reaches 2.3×10-9cm-1 at 2×82s acquisition time. We verify the resolution of the experimental setup by comparing the measured spectrum with the high-quality spectrum obtained with cavity ring-down spectrometer.Full Text: PDF
References
- S.A. Diddams, D.J. Jones, J. Ye, S.T. Cundiff, J.L. Hall, J.K. Ranka et al., "Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb", Phys. Rev. Lett. 84, 5102 (2000). CrossRef
- J.L. Hall, "Nobel Lecture: Defining and measuring optical frequencies", Rev. Mod. Phys. 78, 1279 (2006). CrossRef
- T.W. Hänsch, "Nobel Lecture: Passion for precision", Rev. Mod. Phys. 78, 1297 (2006). CrossRef
- M.J. Thorpe, J. Ye, "Cavity-enhanced direct frequency comb spectroscopy", Appl. Phys. B 91, 397 (2008). CrossRef
- F. Adler, M.J. Thorpe, K.C. Cossel, J. Ye, "Cavity-Enhanced Direct Frequency Comb Spectroscopy: Technology and Applications", Annu. Rev. Anal. Chem. 3, 175 (2010). CrossRef
- P. Masłowski, K.C. Cossel, A. Foltynowicz, J. Ye, Cavity-Enhanced Spectroscopy and Sensing, G. Gagliardi, H.-P. Loock, eds., Springer Series in Optical Sciences (Springer Berlin Heidelberg, 2014), Vol. 179, p. 271.
- M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection", Science 311, 1595 (2006). CrossRef
- F. Keilmann, C. Gohle, R. Holzwarth, "Time-domain mid-infrared frequency-comb spectrometer", Opt. Lett. 29, 1542 (2004). CrossRef
- I. Coddington, W.C. Swann, N.R. Newbury, "Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs", Phys. Rev. Lett. 100, 013902 (2008). CrossRef
- B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem et al., "Cavity-enhanced dual-comb spectroscopy", Nat. Photonics 4, 55 (2010). CrossRef
- A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, J. Ye, "Quantum-Noise-Limited Optical Frequency Comb Spectroscopy", Phys. Rev. Lett. 107, 233002 (2011). CrossRef
- S. Kassi, K. Didriche, C. Lauzin, X. de G. d'Elseghem Vaernewijckb, A. Rizopoulos, M. Herman, "http://dx.doi.org/10.1016/j.saa.2009.09.058", Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 75, 142 (2010). CrossRef
- A. Khodabakhsh, A.C. Johansson, A. Foltynowicz, "Noise-immune cavity-enhanced optical frequency comb spectroscopy: a sensitive technique for high-resolution broadband molecular detection", Appl. Phys. B 119, 87 (2015). CrossRef
- A. Foltynowicz, P. Masłowski, A.J. Fleisher, B.J. Bjork, J. Ye, "Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide", Appl. Phys. B 110, 163 (2012). CrossRef
- T. Gherman, D. Romanini, "Mode–locked cavity–enhanced absorption spectroscopy", Opt. Express 10, 1033 (2002). CrossRef
- M.J. Thorpe, D. Balslev-Clausen, M.S. Kirchner, J. Ye, "Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis", Opt. Express 16, 2387 (2008). CrossRef
- D. Romanini, I. Ventrillard, G. Mejean, J. Morville, E. Kerstel, Cavity-Enhanced Spectroscopy and Sensing, G. Gagliardi and H.-P. Loock, eds., Springer Series in Optical Sciences (Springer Berlin Heidelberg, 2014), Vol. 179, p. 1.
- S. Xiao, A.M. Weiner, C. Lin, "A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory", Quantum Electron. IEEE J. Of 40, 420 (2004). CrossRef
- M. Shirasaki, "Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer", Opt. Lett. 21, 366 (1996). CrossRef
- S. Xiao, A.M. Weiner, "2-D wavelength demultiplexer with potential for ≥ 1000 channels in the C-band", Opt. Express 12, 2895 (2004). CrossRef
- P.M. Cox, R.A. Betts, C.D. Jones, S.A. Spall, I.J. Totterdell, "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model", Nature 408, 184 (2000). CrossRef
- A. Butz, S. Guerlet, O. Hasekamp, D. Schepers, A. Galli, I. Aben et al., "Toward accurate CO2 and CH4 observations from GOSAT", Geophys. Res. Lett. 38, (2011). CrossRef
- L S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath et al., "The HITRAN2012 molecular spectroscopic database", J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013). CrossRef
- A. Cygan, S. Wójtewicz, J. Domysławska, P. Masłowski, K. Bielska, M. Piwiński et al., "Spectral line-shapes investigation with Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy", Eur. Phys. J. Spec. Top. 222, 2119 (2013). CrossRef
- S. Wójtewicz, K. Stec, P. Masłowski, A. Cygan, D. Lisak, R.S.Trawiński et al., "Low pressure line-shape study of self-broadened CO transitions in the (3←0) band", J. Quant. Spectrosc. Radiat. Transf. 130, 191 (2013). CrossRef
Downloads
Published
2015-09-30
How to Cite
[1]
G. Kowzan, “Broadband CO2 measurements with VIPA spectrometer in the near-infrared”, Photonics Lett. Pol., vol. 7, no. 3, pp. pp. 78–80, Sep. 2015.
Issue
Section
Articles